1. Motivation
- Would like to estimate dense 3D maps online for high-speed autonomous navigation.
- Cameras are information dense, low SWaP, inexpensive, but
 - Sparse SLAM: Cheap, but low map fidelity
 - Dense SLAM: High map fidelity, but expensive
 - Semi-dense SLAM: Balance, but maps still noisy with holes

Can we compute dense 3D maps with the efficiency of semi-dense methods?

2. Monocular SLAM
Given images I_1, I_2, \ldots

Localize: estimate camera pose T_1, T_2, \ldots

Map: estimate 3D points $\{p_i\}$

Which pixels should be mapped? Corners? Gradients? Low-texture regions? Every pixel?

3. Key Insights
1. Low-texture regions correlated with planar structure - don’t need to reason about every pixel to reconstruct scene, but don’t need to completely discard data. Can estimate depth at multiple image scales to take advantage of all available texture.
2. World is locally smooth. Expensive global regularization techniques can be accelerated by applying at multiple image scales.

Yes! — By estimating depth on a quadtree to leverage all available texture and smoothing using a variational regularizer.

4. Pipeline

5. Quadtree Depthmaps
1. Convert keyframe image to quadtree based on texture
2. Perform epipolar search for every node at corresponding image scale

Epipolar search region

Keyframe

Comparison image

6. Smoothing
Estimate smoothed inverse depthmap ξ from noisy inverse depths z by minimizing variational functional

$$
\min TV(\xi) + \lambda \|W(\xi - z)\|_1
$$

Regularizer term

Data term

Scaling factor

Total Variation-Huber $TV(\xi) = |D\xi|_\alpha$

Huber Norm

Quadtree Discrete Derivative

7. Results
Evaluated against LSD-SLAM (Engel et al. ECCV 2014) using TUM RGB-D SLAM Benchmarks

Lower inverse depth error, denser keyframes, same running time, CPU-only

Depthmap Comparison

Kinect

LSD-SLAM

MLM

LSD-SLAM

MLM

LSD-SLAM

MLM

LSD-SLAM

MLM