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Abstract— We propose an efficient method for monocular
simultaneous localization and mapping (SLAM) that is capa-
ble of estimating metrically-scaled motion without additional
sensors or hardware acceleration by integrating metric depth
predictions from a neural network into a geometric SLAM
factor graph. Unlike learned end-to-end SLAM systems, ours
does not ignore the relative geometry directly observable in the
images. Unlike existing learned depth estimation approaches,
ours leverages the insight that when used to estimate scale,
learned depth predictions need only be coarse in image space.
This allows us to shrink our network to the point that per-
forming inference on a standard CPU becomes computationally
tractable.

We make several improvements to our network architecture
and training procedure to address the lack of depth observ-
ability when using coarse images, which allows us to estimate
spatially coarse, but depth-accurate predictions in only 30 ms
per frame without GPU acceleration. At runtime we incorporate
the learned metric data as unary scale factors in a Sim(3) pose
graph. Our method is able to generate accurate, scaled poses
without additional sensors, hardware accelerators, or special
maneuvers and does not ignore or corrupt the observable
epipolar geometry. We show compelling results on the KITTI
benchmark dataset in addition to real-world experiments with
a handheld camera.

I. INTRODUCTION

The field of monocular simultaneous localization and map-
ping (SLAM), in which both egomotion and environmental
structure are estimated from a single moving camera, has
undergone tremendous advances over the past twenty years.
Early filter-based approaches [2] have quickly evolved to
sophisticated, hierarchical, factor graph-based optimizations,
such as the methods of [3]–[7].

Due to the projective nature of cameras, however, these
monocular systems – which rely solely on the geometric
content of the images – can only estimate camera egomotion
and environmental structure up to an arbitrary scale factor.
Additional information must be exploited to resolve the
metric scale of the solution. While leveraging priors over
the camera’s altitude or the size of known objects in the
scene [8] is possible, the current most popular technique is
to fuse the images with an inertial measurement unit (IMU),
which measures linear accelerations and angular velocities
at metric scale.

Though significant progress has been made on this front
[9]–[13], these existing visual-inertial SLAM approaches
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Fig. 1: Metric Monocular SLAM: Our method is capable of es-
timating metric camera motion from monocular images without
additional sensors or hardware acceleration by leveraging depth
predictions from a small neural network. Top row: Input image from
the KITTI dataset [1]. Second row: Groundtruth depths from LIDAR
scans. Third row: Coarse depthmap predicted with our network.
Bottom row: Resulting metrically scaled trajectory (blue) versus
the groundtruth (red).

have a number of drawbacks. Beyond the additional hard-
ware that must be calibrated and time-synchronized, these
algorithms are difficult to implement, often require expert
parameter tuning, are extremely sensitive to errors in the
accelerometer biases, and require high-acceleration motion
to excite the IMU and make scale observable. (The last point
is particularly troublesome for mobile robot navigation as it
can significantly complicate the motion planning problem.)

To address these limitations, methods that apply end-
to-end deep learning techniques to the monocular SLAM
problem have appeared in recent years, spurred by the rapid
adoption of deep, convolutional neural networks (CNNs) for
a variety of computer vision tasks [14]–[18]. Although these
end-to-end SLAM systems show promise, and can output
scaled solutions, their tracking performance still lags behind
geometric approaches and they require GPU acceleration to
perform inference.



Given that the relative geometry of the monocular SLAM
problem is directly observable from the image data, we
believe a more targeted application of machine learning
(which does not ignore directly observable quantities in the
sensor data) will ultimately lead to more robust systems.

To that end, we propose a monocular SLAM solution
that combines metric information that can be inferred using
a neural network with the state-of-the-art in factor graph-
based geometric SLAM. We first train a small CNN to
regress metric depth from monocular images given calibrated
stereo frames as training data. Unlike existing learned depth
estimation approaches [19]–[21], our technique leverages the
insight that when used to estimate scale, these learned predic-
tions need only be coarse in image space. This allows us to
shrink our network to the point that performing inference on
a standard CPU becomes computationally tractable. Simply
downsampling the input images and training the network
to minimize photoconsistency between stereo training pairs
yields inaccurate depths, however, as the disparity between
the left and right images decreases with image resolution. We
make several improvements to our network architecture and
training procedure to address this lack of depth observability,
while keeping the efficiency that comes with using coarse
input images.

First, although coarse images are used as input to the
network at test time, we train on full resolution images and
compute additional photoconsistency loss terms in a fine-to-
coarse manner. Incorporating these loss terms at training time
means that photoconsistency errors that are only observable
at fine image scales can still be used to learn the disparity
at the coarser image scales that we care about.

Second, we provide an additional supervision signal to
the network by estimating a full-resolution disparity map
using conventional block-matching stereo. Although these
directly-computed disparity maps can be sparse and noisy,
they nonetheless provide a loss signal that can allow the
network to learn the correct disparity values at coarse image
scales where photoconsistency may be insufficient.

These improvements allow us to estimate spatially coarse,
but depth-accurate predictions in only 30 ms per frame on
a standard CPU. At runtime we divide the SLAM problem
into a local visual odometry (VO) module and a global pose
graph module (see Figure 3). The local VO module performs
conventional monocular SLAM over a small sliding window
of keyframes, while the global pose graph incorporates
metric depth measurements from the network to constrain the
solution scale. After each iteration of solving for the camera
poses and landmark positions, the scale of the global pose
graph can be used to warp the local VO so that metrically
scaled geometry is available for the most recent image.

Our method has notable advantages over existing ap-
proaches. Unlike inertial-based systems, we do not require
extra sensors or special motion to generated scaled outputs.
Unlike end-to-end learning-based systems, we do not ignore
the observable epipolar geometry present in the live images
and can take advantage of factor graph optimization. Unlike
learned monocular depth estimation methods, we target the

network specifically for scale estimation and can thus shrink
the network to allow for fast inference without hardware
acceleration. We show compelling results on the KITTI
benchmark dataset in addition to real-world experiments with
a handheld camera.

II. RELATED WORK

Applying machine learning to solve aspects of the monoc-
ular SLAM problem has seen a recent resurgence in the
literature due to the increasing expressive power of deep
neural networks. While some methods target the monocular
visual odometry problem specifically [16], [17], single-view
depth estimation has seen an explosion of progress in the
last decade. Initial methods used explicit supervision from
ground truth models or LIDAR scans to regress depth from
images [22], [23], while more recent approaches use self-
supervision in the form of calibrated stereo imagery in order
to regress depth [19], [21]. These self-supervised networks
are increasingly augmented with separate pose estimation
modules so that they can be applied directly to monocular
video instead of calibrated stereo imagery [14], [15], [18],
[20].

Our approach is most similar to the hybrid
learned/geometric methods of [24]–[26], which combine
learned priors with geometric SLAM. CNN-SLAM [24]
uses a CNN to predict a depthmap for each frame in a
keyframe SLAM graph, which is then iteratively refined and
fused into a global map. DPC-Net [25] trains a network to
provide corrections to an existing visual odometry pipeline.
DVSO [26] predicts a hypothetical stereo image from a
monocular image and then uses the pair of images to drive
a stereo visual odometry system [27].

III. METHOD

A. Notation

We represent the image taken at time k by the function
Ik : Ω → R over the pixel domain Ω ⊂ R2. K ∈ R3×3

denotes the intrinsic camera parameters. We represent the
pose of the camera at time k relative to frame j by Tj

k ∈
SE(3). An element of the group of 3D similarity transforms
Sim(3) is denoted by Sjk. The perspective projection function
is denoted by π(x, y, z) = (x/z, y/z). Vectors represented in
homogeneous coordinates are denoted by x̄ = (x, 1) ∈ Rn+1

for x ∈ Rn.
Given rectified stereo images, we let Dl : Ω→ R represent

the disparity map that warps the right image Ir to the left
image Il such that Il(u) = Ir(u + Dl(u)). Similarly we
let Dr represent the disparity map that warps the left image
to the right image. A disparity map D can be converted
to inverse depthmap Z given the horizontal focal length fx
of the cameras and the horizontal baseline B as Z(u) =
D(u)/(Bfx).

B. Single-view Depth Regression

Following the self-supervised approach of Godard et
al. [19], we estimate the metric inverse depthmap Z for a
given image by treating it as the left image Il of a calibrated



stereo pair and training a CNN to predict the corresponding
right image Ir via the disparity maps Dl and Dr. We
therefore wish to learn a function f with parameters θ that
maps Il to Ir (and vice versa) via Dl and Dr:

(Dl, Dr) = f(Il; θ)

Il(u) = Ir(u+Dl(u))

Ir(u) = Il(u+Dr(u)).

(1)

With a dataset of stereo pairs D = {Il, Ir}j and a loss
function l that measures the quality of the predictions, we
can estimate the parameters θ by solving the following
optimization problem:

θ∗ = arg min
θ

∑
Il,Ir∈D

l(f(Il; θ), Il, Ir). (2)

1) Network Architecture: We choose f to be a convo-
lutional neural network for the power of these models to
capture complex patterns in image data, while still being
practical to train. Specifically, we base our network on the
pyramidal model detailed by Poggi et al. [21] augmented
with residual blocks [28]. This network significantly reduces
the number of parameters required to regress disparity com-
pared to the seminal approaches of [15], [18], [19]. Since we
are interested in scale estimation, however, we can further
simplify the network architecture. The model is built using
three main building blocks: a feature extractor block, a
disparity estimator block, and an upsampler block repeated
at multiple image scales as shown in Figure 2.

The feature extractor block is built using four 3 × 3
convolutional layers with ReLU activations [29] arranged
with skip connections into two residual blocks [28]. The first
convolutional layer in the block also performs downsampling
with a stride of 2. The number of filters depends on the
image scale. The disparity estimator block is composed of a
series of four 3× 3 residual layers, with the first three using
ReLU activations and the final output layer using a sigmoid
activation to ensure positive disparities. The number of filters
per layer in this block is 96, 64, 32, and 8, respectively. The
upsampler block is simply a transpose convolution with stride
2 with the same number of filters as the input.

Given an input image of a particular resolution, we define
7 pyramid levels of interest: L0 (the base image) through L6
(the coarsest resolution). To ensure computational efficiency
on constrained hardware, we only extract features from L3
to L6 by stacking feature extractor blocks with 16, 32, 64,
and 128 filters at each respective scale. At L6, we attach
a disparity estimator block directly to the feature extractor
outputs to yield D6 – the disparity map for the coarsest
image scale. For L3 to L5 we take the features from each
scale and concatenate them with those from the next coarsest
scale after passing them through an upsampler block. These
concatenated features are then fed into a disparity estima-
tor block to generate D3 . . . D5. The finest disparity maps
D0 . . . D2 are generated by simple bilinear interpolation for
efficiency. This simple model is expressive enough to learn
high-quality (but coarse) disparity maps despite having only
2.3 million trainable parameters.
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Fig. 2: Network Architecture: Our network follows the pyramidal
structure of [21] with a series of feature extractor blocks and
disparity estimator blocks at several image scales. Each processing
block is comprised of residual blocks [28] with the number of filters
varying depending on the pyramid level.

2) Loss Function: We train our network to regress dispar-
ities by minimizing a loss function composed of four terms:
a photoconsistency loss lp, a left-right consistency loss llr,
a disparity regularization term lr, and a supervision term ls,
defined at each image scale:

l(f(Il; θ), Il, Ir) =

6∑
i=0

λp

(
lp(I

i
l , Î

i
l ) + lp(I

i
r, Î

i
r)
)

+

λlrllr(D
i
l , D

i
r)+

λr
(
lr(D

i
l) + lr(D

i
r)
)

λs
(
ls(D

i
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i
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)
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(3)

The photoconsistency term lp measures the photometric
error between the input image I and the image predicted
using the estimated disparity maps Î. Following Godard et
al. [19], we set lp to be a combination of structural similarity
SSIM and a simple L1 error:

lp(I, Î) =
1

N

∑
u∈Ω

α
1− SSIM(I(u), Î(u))

2
+

(1− α)|I(u)− Î(u)|,
(4)

where N is the number of pixels in the image at a given
scale and α > 0 controls the weighting between the SSIM
and L1 terms.

The left-right consistency loss llr measures the discrep-
ancy between the left and right disparity maps after warping
them into each other:

llr(Dl, Dr) =
1

N

∑
u∈Ω

|Dl(u)−Dr(u +Dl(u))|+

|Dr(u)−Dl(u +Dr(u))|.
(5)

The disparity regularization term lr penalizes non-smooth
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Fig. 3: Factor Graphs: Our monocular SLAM backend is composed
of two factor graphs: a local visual odometry (VO) graph (left) and a
global pose graph (right) The local VO module estimates unscaled
camera poses and landmarks, while the global pose graph fuses
marginalized keyframes from the local VO module with metric scale
factors generated by our neural network.

disparity maps where the image gradient is low:

lr(D) =
1

N

∑
u∈Ω

e−||∇xI(u)||∇xD(u)+

e−||∇yI(u)||∇yD(u).

(6)

This loss is applied to both the left and right disparity maps.
The final supervision loss ls measures the Huber error be-

tween the estimated disparity maps Dl and Dr and disparity
maps generated using traditional block-matching Bl and Br:

ls(D) =
1

N

∑
u∈Ω

||D(u)−B(u)||ε, (7)

where ε > 0 is the parameter that governs when the Huber
norm switches between squared and linear error.

C. Local Visual Odometry

Our local monocular VO pipeline is divided into a frontend
module that builds a factor graph GL = (VL,FL) from
the raw image stream and a backend module that optimizes
variables VL (see Figure 3). VL contains keyframe poses KL
and landmark map ML. The factor set FL is composed of
reprojection factors rp that link keyframes and landmarks.

1) Frontend: At each new frame Ik, we detect corners
using the method of [30] and track them from frame to
frame using Lucas-Kanade [31], [32]. When the average
pixel motion of the features between the last keyframe and
current image exceeds a threshold, we create a new keyframe
with pose TW

k ∈ SE(3), initialized by running motion-
only Bundle Adjustment with respect to the existing map
ML = {lij} comprised of landmarks lij . Each landmark lij is
parameterized by its pixel location uj ∈ Ω, its inverse depth
ξj ∈ R+, and the frame it was detected in i. Features that
were detected in the current frame k are initialized as new
landmarks. Observations of pre-existing landmarks in k are
added to FL as reprojection factors.

2) Reprojection Factors: Each time a landmark lij is
observed in a new keyframe k, we insert a reprojection factor
into the graph that constrains the landmark’s inverse depth
and the poses of the keyframes in which it was observed.
Suppose that landmark lij is observed in keyframe k at
pixel location pj ∈ Ω. The reprojection error rp from this
observation is given by

rp(T
W
i ,T

W
k , l

i
j) = π

(
KTk

WTW
i K−1ūj/ξj

)
− pj . (8)

3) Backend: After a new keyframe is initialized and all
new factors are added to the graph, we enqueue a solve
operation that will take place in a background thread. The
total cost represented by GL can be written as

EL(KL,ML) =
∑

i,j,k∈FL

||rijkp
(
TW
i ,T

W
j , l

i
k

)
||ε (9)

where ||·||ε represents the Huber norm with parameter ε > 0.
This objective function is a (robust) sum of squared resid-

uals, which we can optimize using the Levenberg-Maquardt
algorithm [33], [34].

4) Marginalization: We marginalize out old keyframes to
ensure real-time processing. Suppose we wish to marginalize
out keyframe k and its child landmarks. We will denote
this set of variables by vy = {TW

k , {lkj }}. We then find
the factors Fsep that connect vy to GL. Let vx denote the
variables in VL that are connected to Fsep, but are not in
vy . The variables vx and vy and the factors Fsep form a
subgraph Gsep ⊂ GL. The cost associated with this subgraph
is given by

Esep(vx, vy) =
∑

i,j,k∈Fsep

||rp
(
TW
k ,T

W
j , l

k
k

)
||ε. (10)

Linearizing rp around the current estimates of vx and vy
yields a quadratic cost in the tangent space of vx and vy .
We can then eliminate the vy component of the cost via the
Schur complement, leaving a quadratic factor Fδ on vx.

With vy eliminated, we remove the variables vy and the
factors Fsep from GL and add the marginal factor Fδ onto
the remaining variables vx. The marginalized keyframe TW

k

and landmarks lkj are then passed to the global pose graph
(see Section III-D).

D. Global Pose Graph

Once a local keyframe k and its child landmarks {lkj }
are marginalized out of the local VO module, we freeze
the landmark inverse depth values ξj and insert a new pose
SWk ∈ Sim(3) into a global pose graph GG = (VG,FG).
Here VG contains only Sim(3) pose variables. The factor set
FG contains relative odometry factors, loop closure factors,
and scale factors.

1) Relative Odometry Factors: We link the newly inserted
pose variable k to the rest of VG using a relative odometry
factor rodom between k and the most recent global pose
variable j. Let ˆ

Sjk denote the relative transform between k
and j when k is marginalized out of the local window. rodom
is then given by

rodom(SWk ,S
W
j ) = log

(
SjWSWk Ŝkj

)
, (11)

where log : Sim(3) → sim(3) denotes the logarithmic map
between Sim(3) and its Lie algebra sim(3). We let Fodom
denote the set of all odometry factors.
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Fig. 4: KITTI Odometry Performance: Our method gives compelling
performance on the KITTI odometry benchmark. The left column
shows sequences that were included in the training data of our
metric depth prediction network. The right column shows sequences
that were not used to train the network.

2) Loop Closure Factors: When local keyframe k is
marginalized out, we compare Ik to the images correspond-
ing to the poses in VG using a bag-of-words (BoW)-based
descriptor vector [35] generated with ORB features [36]. If a
match is detected, we then match the features across the two
frames and use the matches to estimate the relative Sim(3)
transform between the two poses. A loop factor rloop is then
added to FG with the same form as rodom. We let Floop
denote the set of all loop factors.

3) Scale Factors: We employ the inverse depth estimation
network described in Section III-B to generate scale measure-
ments for a pose in the global graph GG. The child landmarks
lij of a pose SWi have arbitrarily scaled inverse depths ξj .
Using our inverse depth estimation network, we can estimate
the metric inverse depth zj for each landmark. The ratio of
the unscaled inverse depth ξj to the metric inverse depth zj
is an estimate of the scale si of the pose SWi . We can add
these measurements as unary factors rs on the scale variable
si:

rs(S
W
i ) = si − ξj/zj . (12)

We let Fs denote the set of all scale factors.
4) Backend: The total cost represented by GG can then

be written as:

EG(VG) =
∑

j,k∈Fodom

∣∣∣∣rodom(SWk ,S
W
j )
∣∣∣∣2

Σodom
+

∑
j,k∈Floop

∣∣∣∣rloop(SWk ,SWj )
∣∣∣∣2

Σloop
+

∑
i∈Fs

||rs(SWi )||2εs

(13)

and can be optimized using Levenberg-Marquardt [33]. Here
Σodom,Σloop ∈ R7×7 denote the odometry and loop noise
covariances, respectively and εs denotes the Huber noise
parameter for the scale factors.

KITTI Odometry Benchmark

SfMLearner [18] Monodepth2 [20] DVSO [26] Ours

Tr
ai

n

Run trel rrel trel rrel trel rrel trel rrel
02 11.0 4.18 13.1 5.27 0.84 0.22 1.15 0.27
06 10.7 6.31 17.0 12.9 0.73 0.35 2.61 1.22
08 8.93 3.75 14.2 5.98 1.03 0.25 1.71 0.35
09 10.6 4.07 17.7 6.18 0.83 0.21 1.70 0.48
10 11.1 4.06 13.1 6.74 0.74 0.21 1.01 0.37
Avg 10.4 4.11 13.8 5.56 0.89 0.23 1.39 0.33

Te
st

00 15.9 6.19 15.5 6.47 0.71 0.24 4.55 0.93
03 11.1 4.52 10.2 2.93 0.77 0.18 4.72 0.21
04 3.69 3.28 10.6 1.46 0.35 0.06 18.8 0.27
05 10.8 4.66 12.6 6.51 0.58 0.22 2.36 0.33
07 12.7 5.58 10.1 3.25 0.72 0.20 1.09 0.30
Avg 13.7 5.63 14.4 6.69 0.67 0.24 3.85 0.73

TABLE I: KITTI Odometry Benchmark: Here we show our
pipeline’s performance on the KITTI Odometry Benchmark [1].
trel denotes the relative translation error averaged over 100m to
800m path segments (expressed as a percent of distance traveled).
rrel denotes the relative rotation error averaged over the same
path segments (expressed as degrees per 100m). The runs labeled
“Train” are included in the training data for both our network
and DVSO [26], while the runs labeled “Test” are not. Note that
our method performs competitively on the benchmark despite only
requiring a CPU.

IV. EVALUATION

We demonstrate the performance of our approach quantita-
tively using the KITTI Odometry Benchmark [1] (Section IV-
B) and qualitatively using handheld imagery collected from
an indoor environment (Section IV-C).

A. Implementation Details

We designed our depth prediction network using Tensor-
flow [37] and set the base image size L0 to 256×512 pixels.
For all our experiments, the network is trained for 100 epochs
using the Adam optimizer [38] on an NVIDIA 1080Ti GPU
with a batch size of 8 and a learning rate of 0.0001, which
is halved after 30 epochs and again after 40 epochs. We
follow standard data augmentation practices by randomly
flipping the training images left to right and perturbing the
image color, including gamma and brightness shifting. We
set the weights governing the terms in the loss function as
λp = 1.0, λlr = 1.0, λr = 0.1, and λs = 10.0. Network
inference is triggered at runtime using the REST API of the
tensorflow serving package.

Our geometric SLAM pipeline is implemented in C++
using the Ceres solver library [39]. Disparity maps from L3
(32 × 64 pixels) are used generate the metric scale factors
for each keyframe pose. Both network inference and SLAM
optimization are performed at runtime entirely on an Intel i7
4820K CPU.

B. KITTI Odometry Evaluation

We evaluate the odometry performance of our approach
quantitatively using ten video sequences from the KITTI
Odometry Benchmark [1]. We train our depth prediction
network using the common training split of the raw KITTI
stereo data from [40], which consists of 22,600 training
stereo pairs, 888 validation pairs, and 697 testing pairs.

Of the ten odometry sequences, images from runs 00,
06, 08, 09, and 10 are included in the training data of the
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Fig. 5: Relative Pose Error vs. Distance Traveled: The plots above
show the relative translation (left) and rotation error (right) on the
training (top) and test (bottom) runs from the KITTI Odometry
Benchmark [1]. Our method achieves competitive performance on
the benchmark despite not relying on GPU acceleration.

depth prediction network. Runs 00, 03, 04, 05, and 06 have
no overlap with the depth network training data. (Run 01
exhibits very little texture for feature detection and was not
used to evaluate odometry.) Example trajectories for training
and test runs are shown in Figure 4.

Quantitative performance is measured using relative pose
error (RPE) [41] over a set of predefined path lengths (100 m
to 800 m). Table I shows the relative translation error trel
(expressed as a percent of distance traveled) and relative
rotation error rrel (expressed in degrees per 100m) for each
run averaged over all path lengths, while Figure 5 shows
these metrics for each path length averaged over all runs.

We compare our method against two end-to-end SLAM
packages (SfMLearner [18] and Monodepth2 [20]) that are
scaled to metric scale and a hybrid learning/geometric ap-
proach DVSO [26]. Note that SfMLearner and Monodepth2
are trained on runs 00-08. DVSO is trained using the same
split as our method, but uses additional supervision from
a sparse reconstruction method [7]. We are unable to do a
full comparison to DVSO as the authors have not provided a
public implementation of their technique, and so we compare
to their published results.

Our method performs competitively on the benchmark,
achieving a relative translation error of 1.39 percent and a
relative rotation error of 0.33◦ / 100m on the training runs
and 3.85 percent and 0.73◦ / 100m on the test runs. Notably,
all computation is performed entirely on the CPU, while
other methods require GPU acceleration. Network inference
takes approximately 30 ms per frame. For comparison, the
authors of DVSO report that evaluations of their network
take 40 ms per frame on an NVIDIA Titan X Pascal GPU.

C. Handheld Odometry Evaluation

In addition to the quantitative results described in the
previous section, we also qualitatively validate our system
with imagery collected using a handheld stereo camera that
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Fig. 6: Handheld Trajectories: We demonstrate our method’s per-
formance using handheld camera data from an indoor environment.
Top row: Sample training images from the environment. Bottom
row: Comparison of poses from our approach (blue) against those of
Stereo ORB-SLAM2 [42] on two test trajectories. Note that Stereo
ORB-SLAM2’s poses are correctly scaled as the stereo baseline is
known a priori. Our technique is able to generate correctly scaled
poses using only a single monocular camera.

captures time synchronized images at 16 Hz. The baseline
between the left and right cameras is 5 cm. The environment
used for the experiment is a large, indoor laboratory common
area and student thoroughfare between classrooms.

We collected a total of 16,980 stereo images, 11,548 of
which were used for training our depth prediction network
with 1,510 pairs used for validation. Two complete runs
comprising 3,922 pairs were withheld to test our odometry
performance. At runtime, the images from the left camera
were used to compute our metrically scaled poses. The
trajectories for the two test runs are shown in Figure 6. In
the absence of groundtruth poses, we compare our monocular
odometry estimates against that of Stereo ORB-SLAM2 [42],
a state-of-the-art geometric stereo odometry pipeline. (Note
that as a stereo method, its poses are metrically scaled since
the baseline between the left and right cameras is known.) As
evident in Figure 6, our method is able to produce accurate
poses at the correct metric scale despite only using a single
monocular camera.

V. CONCLUSION

We have proposed an efficient method for monocular
SLAM that is capable of estimating metrically-scaled motion
without additional sensors or compute by integrating metric
depth predictions from a neural network into a geometric
SLAM pipeline. Our depth prediction network is designed
specifically for metric scale estimation and thus can be much
smaller and faster than competing systems. We make several
improvements to our network architecture and training pro-
cedure to address the lack of depth observability when using
coarse image input that allows us to estimate spatially coarse,
but depth-accurate predictions in only 30 ms per frame. We
show compelling results on the KITTI benchmark dataset in
addition to real-world experiments with a handheld camera.
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