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by
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requirements for the degree of
Doctor of Philosophy

Abstract
Monocular cameras are powerful sensors for a variety of computer vision tasks since
they are small, inexpensive, and provide dense perceptual information about the sur-
rounding environment. Efficiently estimating the pose of a moving monocular camera
and the 3D structure of the observed scene from the images alone is a fundamental
problem in computer vision commonly referred to as monocular simultaneous local-
ization and mapping (SLAM). Given the importance of egomotion estimation and
environmental mapping to many applications in robotics and augmented reality, the
last twenty years have seen dramatic advances in the state of the art in monocular
SLAM. Despite the rapid progress, however, several limitations remain that prevent
monocular SLAM systems from transitioning out of the research laboratory and into
large, uncontrolled environments on small, resource-constrained computing platforms.

This thesis presents research that attempts to address existing problems in monoc-
ular SLAM by leveraging different sources of prior information along with targeted
applications of machine learning. First, we exploit the piecewise planar structure
common in many environments in order to represent the scene using compact trian-
gular meshes that will allow for faster reconstruction and regularization. Second, we
leverage the semantic information encoded in large datasets of images to constrain
the unobservable scale of motion of the monocular solution to the true, metric scale
without additional sensors. Lastly, we compensate for known viewpoint changes when
associating pixels between images in order to allow for robust, learning-based depth
estimation across disparate views.
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Chapter 1

Introduction

Cameras are powerful sensors for a variety of tasks since they are small, inexpen-

sive, and provide dense perceptual information about the surrounding environment.

Jointly estimating the position and orientation (or pose) of one or more moving cam-

eras in real time, along with the 3D structure of the observed scene, is a fundamental

problem in computer vision commonly referred to as visual simultaneous localiza-

tion and mapping (SLAM). Given the importance of pose estimation and mapping

to many different applications, the last twenty years has seen dramatic advances in

the state of the art in visual SLAM, driven by a combination of factors including

advances in small, lightweight sensors, robust algorithms expressed in the language

of probability theory to interpret those sensors, and powerful computing hardware to

drive those algorithms. As a result, many emerging technologies that are enabled by

visual SLAM are now beginning to transition out of the laboratory and into the wild.

Self-driving cars are one of the most prominent examples of this trend. Vehicles

from Google [150], Apple [94], Uber [115], and others are instrumented with mul-

tiple cameras that when combined offer improved situational awareness around the

vehicle. These cameras are used to estimate the vehicle’s egomotion, localize the

vehicle on known roads and highways, detect lane markers and signs, track other

cars and pedestrians, and map obstacles that must be avoided. While other sensing

modalities are often used in conjunction with cameras, image data is of fundamental

importance and may even be sufficient for full autonomy. Tesla’s self-driving vehicle,
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for example, relies primarily on cameras for its Autopilot technology [214]. While

autonomous cars are large enough to carry a multitude of sensors and ample com-

putation to drive visual SLAM systems, the consequences of failure when operating

a vehicle on public roads means that these SLAM solutions must run in real-time

with low latency and must be extremely robust to errors, sensor noise, and adverse

environmental conditions that stress even state-of-the-art approaches.

Another class of robotic platforms that has received a sizable amount of interest

over time has been micro-aerial vehicles (MAVs or drones) such as quadrotors, hexro-

tors, and fixed-wing aircraft, which typically weigh between 0.5–5 kg and measure

between 0.25–1 m in diameter. Their speed and agility, coupled with their mechani-

cal simplicity and well-understood dynamics models, make them ideal platforms for

academic research as well as applications ranging from aerial photography [2], search

and rescue [206], package delivery [134, 46], planetary exploration [7, 119], and in-

telligence, surveillance, and reconnaissance (ISR) [195]. Unlike self-driving cars, au-

tonomous MAVs are limited in terms of their size, weight, and power (SWaP), which

simultaneously makes visual SLAM techniques extremely useful and extremely chal-

lenging. A fast-flying MAV must process camera data quickly enough to stabilize the

attitude of the vehicle, register its pose with respect to obstacles, and further map

those obstacles so they can be avoided at speed.

Augmented reality (AR) and virtual reality (VR) are other arenas where visual

SLAM techniques have proven to be of critical importance. In both AR and VR, a

person’s view of a scene is replaced by a digital version generated from cameras at a

similar pose to the person’s eyes, for example via a handheld phone or head-mounted

glasses. The images presented to the user may have virtual assets added to the scene,

such as information overlays, game characters, or heads-up-displays (AR), or may

have the scene replaced entirely with a virtual one (VR). The user, however, should

be able to interact with the scene (both real and virtual portions) naturally, without

breaking immersion. While VR has straightforward applications in the video game in-

dustry [85], the potential for AR systems to improve navigation [121], assembly [120],

and telepresence [184] continues to grow. All of these tasks rely on visual SLAM to
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track the pose of the mounted cameras and estimate the scene geometry so that it

can be augmented or replaced. Similar to autonomous MAVs, AR and VR have strict

SWaP constraints, especially when the user must carry the sensors and compute.

Monocular SLAM is a variant of visual SLAM where only a single camera is uti-

lized to drive the SLAM process. This arrangement has a number of unique advan-

tages compared to multi-camera equivalents, including lower SWaP, simpler hardware,

and easier calibration. Monocular SLAM can also be considered the most fundamen-

tal form of visual SLAM, with most multi-camera variations designed to build on top

of the monocular SLAM foundation. In addition, monocular imagery is much more

common in the wild due to the nearly ubiquitous usage in the consumer space.

Early attempts at real-time monocular SLAM solutions leveraged the Extended

Kalman Filter (EKF) [105, 104, 208] and were able estimate the values of tens of

camera poses and landmarks by aggressively marginalizing out past states [32, 41].

As it became more understood that optimizing over the entire camera trajectory

could actually lead to faster and more accurate results by exploiting the sparsity

of the underlying least squares problem [44, 103, 102], offline techniques from the

Bundle Adjustment and Structure-from-Motion (SfM) communities [222, 45, 201, 4]

were adapted to the real-time case [110, 145, 65]. The years since have witnessed

increasing focus on speed [158, 65], map density [58, 56, 55, 153, 80], and fusion with

inertial sensors for metrically-scaled outputs [143, 124, 64, 202, 173].

Despite the rapid progress, however, several limitations remain that prevent monoc-

ular SLAM systems from transitioning out of the research laboratory and into large,

uncontrolled environments on small, resource-constrained computing platforms [25,

42]. For instance, mapping an environment with sufficient density to adequately

describe obstacles, such as by recovering a depth value for every pixel in an input

image, is an extremely computationally intensive operation requiring sizable compu-

tation when only passive monocular imagery (and not, for example, active stereo or

LIDAR measurements) is available. Producing poses and maps that are metrically-

scaled so that the SLAM solution may be used by a robot or human cannot be

accomplished with monocular imagery without additional sensors, which must be
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calibrated, time-synchronized, and expertly-tuned. Finally, the appearance of ob-

jects changes drastically when observed from the disparate viewpoints encountered in

monocular video, which makes the process of associating pixels from different images

— a necessary component of monocular SLAM — all the more intractable.

In this thesis, we argue that there exist untapped sources of prior information that

can be leveraged to address these challenges. Indeed, current approaches to monoc-

ular SLAM and monocular depth estimation often do not utilize all the information

available to them to produce solutions. In particular, these algorithms do not operate

in completely arbitrary environments. The world — from indoor and outdoor envi-

ronments to urban and natural scenes — exhibits a number of structural regularities

that are not always taken into account when building solutions. For instance, some

geometric primitives are incredibly common (e.g., smooth surfaces), while others are

incredibly rare (e.g., fractals). The geometry, color, and texture of a scene are all

highly correlated with each other: roads are usually flat and grey, stop signs are usu-

ally red, trees are usually green, and so on. Semantically meaningful objects like cars,

people, and doors have strong priors on their size, shape, and orientation. Further-

more, the appearance of these objects obey certain, well-defined rules in how they

manifest in images under different views and lighting. When this additional structure

is considered, we contend that there is considerable opportunity to improve monocular

SLAM and monocular depth estimation. This thesis will identify and exploit specific

latent sources of prior information that, coupled machine learning techniques, resolve

the inadequacies alluded to above and allow for significant improvements in accuracy

and speed above the state of the art. In the rest of this chapter, we will briefly de-

scribe the monocular SLAM problem in Section 1.1 before outlining its limitations

and our proposed solutions in Section 1.2, Section 1.3, and Section 1.4.

1.1 Monocular SLAM

Any state estimation and perception system used on a mobile platform typically

needs to provide two principal quantities to be of use: the pose (i.e., position and
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Figure 1-1: Simultaneous localization and mapping (SLAM) is a classical problem in
robotics where a robot equipped with an imperfect sensor (e.g., a quadrotor with a
camera) moves through an environment and observes various landmarks (e.g., pillars
and trees) over time. The robot must fuse the noisy measurements of the landmarks
to estimate its pose, while simultaneously estimating where the landmarks are in
order to build a map. In the scenario depicted, a quadrotor with a camera moves
through the world from time 𝑡 = 0 to 𝑡 = 2 and observes pillar landmarks 𝑝0 and 𝑝2
and tree landmark 𝑝1.

orientation) of the platform and a map of the environment that encodes the geometry

of the scene (including when the scene changes over time). Both quantities are usually

needed in order to, for example, plan motions through the environment that do not

collide with obstacles, provide feedback to a low-level control loop to stabilize the

platform, or overlay virtual assets on the scene in a convincing manner.

Simultaneous localization and mapping (SLAM) is the traditional formulation of

this problem where a mobile platform (e.g., a robot) with imperfect sensors traverses

an unknown environment with a set of landmarks. As the platform moves, it perceives

the landmarks through its sensors and fuses these noisy measurements in order to

localize itself with respect to those landmarks, which have to be estimated (or mapped)
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(a) 2D Scanning Lidar (b) Active Structure-Light RGB-D Camera

(c) Passive Stereo Camera (d) Passive Monocular Camera

Figure 1-2: A variety of sensors can be used for SLAM, including 2D scanning LI-
DARS [131], structured light RGB-D cameras [139], passive stereo cameras [170], and
passive monocular cameras [171]. Each sensing modality has strengths and weak-
nesses, but this thesis concentrates on passive monocular cameras since they can be
used both indoors and outdoors, can range to arbitrarily far objects given sufficient
baseline, and are low SWaP, inexpensive, and ubiquitous.

concurrently (see Figure 1-1). Note that there is a “chicken and egg” aspect to the

SLAM problem: estimating the platform’s pose requires a map, and estimating the

map requires the platform’s pose. Many strategies have been proposed to overcome

this conundrum so that both pose and map can be computed simultaneously in real

time.

A variety of sensing modalities may be used to drive a SLAM pipeline (see

Figure 1-2), but traditional sensor suites typically include an inertial measurement

unit (IMU) that measures the linear accelerations and angular rates experienced by

the platform and a range sensor such as an ultrasonic rangefinder or scanning LI-

DAR [131]. Scanning LIDARS, both the 2D and 3D varieties, drove much of the

research in the early days of SLAM, but are problematic for small, agile robots such

as MAVs and handheld devices because they are either high-SWaP (the smallest 3D

LIDARS typically weigh more than 1kg) or do not adequately observe the environment

(2D LIDARS only perceive slices of the environment at a time, which is insufficient

when the platform pitches or rolls frequently).
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Cameras, on the other hand, are attractive sensors for small mobile platforms as

they provide high-resolution environment information (color, shape, texture, etc.),

while being lightweight, low-power, and inexpensive. They also provide important

non-geometric, semantic information such as the presence of objects of interest like

people, cars, or signs. Furthermore, active or multi-camera variants such as structured-

light and stereo cameras can perceive depth information directly, which is valuable for

SLAM. This thesis, however, focuses on monocular (i.e., passive, single-lens) cameras

for a number of reasons.

First, active sensors based on structured light or time-of-flight technology [139]

have a limited detection range (typically ∼ 5m) and are essentially inoperable in sun-

light due to electromagnetic interference. Passive stereo cameras [170] work outdoors,

but their detection range is limited by the baseline between the two cameras, which is

necessarily small on our platforms of interest, and require accurate calibration to be

effective. Passive monocular cameras [171], however, are robust to sunlight and can

detect distant structure given sufficient translational motion between frames. Spurred

by the rapid adoption of consumer smartphones, they are also smaller, lighter, and

cheaper than the aforementioned alternatives and nearly ubiquitous. We will refer to

the SLAM problem where a monocular camera is the primary sensor as monocular

SLAM.

There are many variants of monocular SLAM, each with strengths and weak-

nesses depending on the task of interest. For example, in many scenarios, it may

be advantageous to factor the monocular SLAM problem into separate components:

one for estimating the camera poses and one for recovering a dense map of the scene

given those poses. We will refer to this second component as monocular depth es-

timation, as we typically wish to represent the scene using a depthmap: an image

where a depth value is provided for every pixel. Monocular depth estimation has its

roots in the stereo and multi-view stereo (MVS) literature, where dense geometry

is estimated from a set on images taken from known poses, typically in an offline

setting [35, 77, 68, 91]. Since the poses of the cameras are assumed known (or com-

puted in a separate process), monocular depth estimation is fundamentally a data
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association problem. If one can associate a pixel in one camera image with a pixel

in another image taken from a different viewpoint, one can use the knowledge of the

poses to triangulate the depth of the point. In traditional stereo, two cameras are

rigidly mounted a short distance apart, whereas in multi-view stereo, the cameras can

be arbitrarily placed or produced by a single monocular camera moving through the

scene.

Although monocular SLAM and monocular depth estimation have received sub-

stantial interest in the robotics and computer vision literature, there remain key

deficiencies that limit these algorithms in practice, especially on small, resource-

constrained platforms [25, 42]. This thesis will focus on three such limitations: (1) es-

timating dense geometry is computationally expensive (Section 1.2), (2) metric scale

is unobservable when only monocular imagery is used (Section 1.3), and (3) pixel

matching is significantly affected by viewpoint changes (Section 1.4). We will then

present solutions to these problems that are enabled by exploiting different sources

of prior information along with targeted applications of machine learning.

1.2 Dense Depth Estimation is Expensive

Dense monocular depth estimation as described in the previous section is a compu-

tationally expensive process. Ideally, we wish to estimate a depth value for every

pixel in a particular reference image given a set of neighboring images. Even for low

resolution images, this is a tall order. For instance, a standard VGA image of size

480 × 640 pixels requires 307,200 separate depth estimates. Estimating depth for

higher resolution images is even more daunting. A 1080p image of size 1080 × 1920

pixels requires over 2 million depth estimates, while a 4K image of size 2160 × 3840

pixels requires over 8 million depth estimates. Even with powerful GPU acceleration,

producing depthmaps of at these scales is computationally intensive. Small, resource-

constrained platforms such as MAVs and mobile phones have even less computation

available. In addition, generating so many depth estimates increases the likelihood of

noise that can corrupt the geometry. Spatial regularization must therefore be applied
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to remove wildly inconsistent depth estimates and denoise the depths. In many cases,

this spatial regularization step can be more involved than producing the depths in

the first place.

We note, however, that the geometry of most environments of interest is usually

much simpler than high-definition images would otherwise suggest. Consider the

geometry of a city composed of a series of buildings. Each building typically has

5 exposed sides. Each side is mostly flat. Each building usually rests on a flat

groundplane. To first order, therefore, the geometry of a city can be well-described

as a finite set of planes or piecewise planar. It is unlikely that all 8 million depth

estimates in a 4K image – or even all 300 thousand depth estimates in a VGA image

– are necessary to encode the geometry for this type of scene. Indeed, if each plane is

composed of a set of triangles (as is common in computer graphics), and each triangle

requires only 3 different depth values (one for each triangle vertex), it is likely that far

fewer depth values would be needed to reconstruct the scene than the total number

of pixels in each image. More complicated environments, like forests, parks, or indoor

scenes, may require more planes and triangles than a city environment would need

to adequately capture the geometry, but a piecewise planar representation is a very

good approximation, especially for many important tasks like obstacle avoidance and

AR.

We therefore propose leveraging this prior information that many scenes of inter-

est can be represented using planes to improve the dense monocular depth estimation

process. We contend that current dense depth estimation methods, which estimate a

depth value for every pixel in the input image, drastically oversample scenes relative

to their inherent geometric complexity, which increases both the resources required to

generate a solution and the regularization needed to produce a plausible reconstruc-

tion. By more intelligently sampling the scene using triangular meshes such that

planar surfaces can be represented using only a small number of depth estimates, we

can not only more compactly represent the scene geometry, but can take advantage of

the graph structure of the mesh to apply more sophisticated regularization techniques

with lower computational cost than existing approaches.
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1.3 Metric Scale is Unobservable

The second limitation of monocular SLAM that we aim to address relates to producing

metrically-scaled SLAM solutions. By metrically-scaled, we mean that the units

used to express the camera poses and scene geometry can be converted to physical

units that correspond to the real scene. Some sensing modalities, such as LIDAR

or structured-light, may directly observe metric quantities, but monocular cameras

do not. Monocular cameras are fundamentally bearing sensors that only observe the

angle of incident light on the sensor plane, not the metric range to the structure from

which the light was reflected. This is why it is impossible to tell the difference between

a small object close to the camera, and a large object far away from the camera.

Imagine, for example, a real car and a to-scale model of the same car. Controlling for

other objects in the scene and lighting, the images produced by placing the car model

close to the camera and the real car far away from the camera will be identical.

Algorithms that rely on these monocular images, therefore, have no way of di-

rectly observing the metric scale of the environment under observation. In particular,

monocular SLAM methods can only estimate the camera’s trajectory and environ-

ment map up to an arbitrary scale factor. Additional information must be exploited

to resolve the metric scale of the solution. While assuming the camera lies at a fixed

altitude is reasonable for some applications (e.g., when the camera is mounted on a

vehicle), the current most popular technique is to fuse the camera with an inertial

measurement unit (IMU), which measures linear acceleration and angular velocities.

Since the linear accelerations are metric quantities, these visual-inertial SLAM ap-

proaches can recover fully metric solutions. However, significant flaws remain. First,

since the metric scale information comes directly from the linear accelerometers, the

platform must undergo high-acceleration maneuvers to expose the scale, which can

be dangerous for some applications like MAV navigation. Second, any errors in the

acceleration signal are doubly-integrated into the position of the camera, meaning

the SLAM solution can quickly diverge from the true pose. Lastly, visual-inertial

approaches are difficult to implement, calibrate, and require expert tuning to work
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well.

Instead, we will leverage the prior semantic information encoded in large datasets

of images to constrain the unobservable scale of motion of the monocular solution to

the true, metric scale without additional sensors or aggressive maneuvers. We first

implement a conventional monocular SLAM pipeline over a small sliding window of

keyframes to generate accurate, but unscaled camera poses. We then train a small

neural network to regress metric depth from the monocular images given calibrated

stereo frames as training data. Unlike existing learning-based approaches [75, 76,

164, 84, 169], our technique leverages the insight that when used to estimate scale,

these learned predictions need only be coarse in image space. This allows us to shrink

our network to the point that performing inference in real time on a standard CPU

becomes computationally tractable. We then fuse the unscaled keyframe poses and

the metric depth measurements from the network into a global, scale factor graph

that, when optimized, produces an accurate, fully-metric SLAM solution.

1.4 Pixel Matching is Affected by View

The final problem we will consider in this thesis concerns a different aspect of dense

monocular depth estimation than the one described in Section 1.2. Recall that monoc-

ular depth estimation is fundamentally a problem of data association: assuming the

camera poses for the input images are known, correctly associating two pixels in two

different images allows the corresponding 3D point to be triangulated. Correctly as-

sociating these pixels is a challenging task, however, primarily because a scene can

appear drastically different when observed from different viewpoints. Individual ob-

jects and structure can be scaled, rotated, or even occluded between views. Relating

individual pixels after these transformations is not straightforward. Traditional stereo

depth estimation methods try to control the ill-effects of this phenomenon by rigidly

mounting cameras such that the respective sensor planes are axis-aligned and parallel,

effectively removing any scale or rotation between the images. In monocular depth es-

timation and multi-view stereo, however, the input cameras can be arbitrarily placed
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and pixel correspondences must be established across these disparate viewpoints.

One way to mitigate this correspondence problem is to learn alternative represen-

tations of the image data that aggregate global context information such that each

pixel is more distinctive and therefore easier to match across frames. Learning-based

depth estimation and MVS solutions use stacks of convolutional neural networks

(CNNs) to extract features from each image, match them across different views, and

triangulate depths for each pixel. They often then smooth or otherwise refine the re-

sulting depthmaps. While impressive results have been presented using this paradigm,

these learning-based MVS methods do not properly leverage all information available

to improve the feature matching process. In particular, state-of-the-art methods from

Im et al. [96], Wang and Shen [227], Huang et al. [95], and Yao et al. [237] all extract

features from each input image without considering the poses of the cameras that pro-

duced them (which are assumed known) and without accounting for the warping that

occurs to the images due to the scene being observed from different viewpoints. This

means that the respective neural networks must learn feature representations that

exhibit scale, rotation, and perspective invariance, which can be difficult to achieve

given limited training data.

We instead propose a novel feature extraction network that properly accounts for

the known viewpoint changes, thereby reducing the burden on the network to learn

scale and rotation invariant features. By compensating for the known viewpoint

changes during the feature extraction process itself, the network can learn features

that are specific to the given placement of the cameras and appropriately modified

by construction, which improves feature matching. Doing this compensation naively,

however, can be computationally demanding. We therefore, improve on the strategy

in two key ways. First, we compute our features in an incremental fashion, greatly re-

ducing the number of convolutional layers than must be evaluated during extraction.

Second, we leverage the refinement techniques described in Khamis et al [108] and

generalize them from the rectified stereo domain to the monocular depth estimation

setting, which allows us to compute features that are significantly downsampled from

the input image resolution, providing significant speed improvements. The combina-
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tion of these two techniques leads to increased depth estimation performance across

disparate views, while being dramatically faster than the state of the art.

1.5 Contributions

We have now briefly outlined three key limitations that prevent monocular SLAM and

monocular depth estimation methods from transitioning out of the research laboratory

and into large, uncontrolled environments on small, resource-constrained platforms.

Chapter 2, will provide a more in-depth overview of the monocular SLAM field,

while the remaining chapters in this thesis will describe aforementioned problems in

greater detail and present solutions that are each enabled by novel applications of prior

information and targeted uses of machine learning. We believe these improvements

take monocular SLAM and monocular depth estimation one step further towards wide

acceptance in real-world applications.

In summary, this thesis makes the following contributions:

∙ A method for dense monocular depth estimation that exploits the piecewise pla-

nar structure of many environments to greatly accelerate the depth estimation

process (Chapter 3).

∙ A learning-based approach for estimating the metric inverse depth of point

landmarks from monocular images (Chapter 4).

∙ A monocular SLAM formulation that leverages scale measurements from a

trained CNN to estimate metrically-scaled egomotion and structure (Chapter 4).

∙ A novel MVS network that can efficiently recover depths from cameras under-

going unconstrained motion (Chapter 5).

∙ A generalization of the learning-based stereo architecture of Khamis et al [108]

to the multi-view depth estimation setting (Chapter 5).

∙ A fast, incremental approach to feature extraction that compensates for the

known camera geometry (Chapter 5).
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1.6 Publications

Sections of Chapter 1 and Chapter 2 were originally presented in Greene [79]. The

work presented in Chapter 3 was originally published in Greene and Roy [81]. The

work presented in Chapter 4 was originally published in Greene and Roy [82]. Lastly,

the work presented in Chapter 5 will appear in Greene and Roy [83].
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Chapter 2

Monocular Simultaneous

Localization and Mapping

This chapter gives a brief overview of the monocular SLAM problem and its solu-

tions. Section 2.1 discusses the probabilistic formulation of the SLAM problem, its

modern interpretation as a sparse factor graph, and the distinction between the back-

end factor graph solvers and frontend factor generators that compose most modern

SLAM pipelines. Section 2.2 then goes into more detail on the SLAM backend, first

covering early filtering-based approaches that marginalize out the past before de-

tailing modern smoothing-based methods that solve for the entire state trajectory.

From there, Section 2.3 covers different aspects of the the monocular SLAM fron-

tend, from epipolar geometry, to feature tracking, to visual odometry. Section 2.4

presents full monocular SLAM solutions in detail, including sparse, dense, and semi-

dense pipelines. Finally Section 2.5 describes the dense monocular depth estimation

problem, where the camera poses are assumed known and the objective is to densely

map the observed environment.

2.1 Probabilistic Formulation

Recall the scenario depicted in Figure 1-1. At each discrete timestep 𝑖 ∈ N, our plat-

form moves through the world and observes a set of landmarks through its imperfect
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sensors. It must then fuse those noisy measurements to estimate its state in addition

to the state of the map. For simplicity, we will assume that the platform is a mobile

robot, but note that it could just as easily be an autonomous car, smartphone, VR

goggles, or any other mobile device. We will also assume, for the moment, that the

sensor is a generic one that can observe landmarks, but will focus on the monocular

camera case in Section 2.3 onward.

To begin, let us denote the robot pose at time 𝑖 by x𝑖 ∈ 𝒳 . Typically, we are

interested in the 3D pose of the robot and thus 𝒳 = SE(3), the group of rigid body

transformations. At times, however, we may need to generalize to other groups such

as Sim(3), the group of similarity transforms [203, 56, 80].

We assume that the robot motion can be described by a first-order Markov model

such that the distribution of the current pose x𝑖 is independent of the past given

the previous pose x𝑖−1. If we let X = (x0, . . . , x𝑇 ) denote the pose history up to

time 𝑇 , then the distribution of the pose history 𝑝(X) can be factored according to

𝑝(X) = 𝑝(x0)
∏︀𝑇

𝑖=1 𝑝(x𝑖|x𝑖−1), where 𝑝(x0) denotes the prior on the initial state and

𝑝(x𝑖|x𝑖−1) denotes the distribution of possible states x𝑖 conditioned on the previous

pose x𝑖 that is governed by an appropriate physics-based process or motion model,

possibly parameterized by a control input.

Next, let P = (p1, . . . , p𝑀) for p𝑗 ∈ R3 refer to the set of 𝑀 landmarks in the

map (we are typically only interested in their 3D positions). We assume the world is

static such that the landmarks do not move, although generalizations can be made for

dynamic scenes. Over time, the sensor onboard the robot will observe the landmarks

and produce some number 𝐾 noisy measurements Z = (z1, . . . , z𝐾) for z𝑘 ∈ 𝒵. The

measurement space 𝒵 will vary from system to system, but could be as simple as

the image domain Ω ⊂ R2 such that each measurement z𝑘 corresponds to the pixel

coordinates of a detected landmark. We assume that measurement z𝑘 depends only

on the pose of the robot x𝑖𝑘
at the time of observation and the particular landmark

under observation p𝑗𝑘
and can be modeled with likelihood function 𝑝(z𝑘|x𝑖𝑘

, p𝑗𝑘
).

(Note that we assume the association between measurement z𝑘 and the pose x𝑖𝑘
and

landmark p𝑗𝑘
is known.)
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With these definitions in hand, the posterior distribution of the pose history X

and landmarks P given measurements Z can be written as:

𝑝(X, P|Z) ∝ 𝑝(x0)
𝑇∏︁

𝑖=1
𝑝(x𝑖|x𝑖−1)

𝐾∏︁
𝑘=1

𝑝(z𝑘|x𝑖𝑘
, p𝑗𝑘

). (2.1)

The objective of SLAM will be to compute an estimate of the pose history X̂ and

the landmark map P̂ from this posterior distribution. For example, by maximizing

𝑝(X, P|Z) over X and P, we obtain the the maximum a posteriori (MAP) estimate.

For further information on the probabilistic foundations of SLAM see [217, 50, 9, 25].

2.1.1 SLAM as a Factor Graph

While the posterior distribution of the SLAM problem given in Equation (2.1) is useful

in its own right, its graphical representation, particularly as a factor graph [116], can

be more illuminating as it reveals more of the specific problem structure.

A factor graph 𝒢 = (𝒱 ,ℱ , ℰ) is a bipartite graph with variable nodes 𝑣𝑖 ∈ 𝒱 ,

factor nodes 𝑓𝑗 ∈ ℱ , and edges 𝑒𝑖𝑗 ∈ ℰ . Each edge 𝑒𝑖𝑗 connects a variable node and

a factor node. As its name implies, a factor graph is used to model the factorization

of a function over the variable nodes 𝑓(𝒱) = ∏︀
𝑗 𝑓𝑗(𝒱𝑗), where 𝒱𝑗 ⊆ 𝒱 . The specific

factorization of 𝑓 given by the 𝑓𝑗 ∈ ℱ dictates the graph structure. An edge 𝑒𝑖𝑗

connects variable 𝑣𝑖 and factor 𝑓𝑗 if 𝑣𝑖 ∈ 𝒱𝑗.

Looking to the posterior distribution 𝑝(X, P|Z) in Equation (2.1) again, we can see

that it is a function of three sets of variables 𝑝(X, P|Z) = 𝑓(X, P, Z), and factorizes

in a particular fashion given our conditional independence assumptions. We can

therefore encode it as a factor graph with variable nodes 𝒱 = (X, P) and factor nodes

ℱ composed of the prior on the initial pose 𝑝(x0), the motion model terms 𝑝(x𝑖|x𝑖−1),

and the measurement terms 𝑝(z𝑘|x𝑖𝑘
, p𝑗𝑘

). In our running robot example, we can

incorporate motion factors u𝑖 to constrain the relative motion between particular

pairs of pose variables, for example from odometry or a physical motion model given

knowledge of the control variables, while the measurement factors constrain pairs of

pose variables and landmark variables (see Figure 2-1).
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Figure 2-1: The posterior distribution of the SLAM problem as described in Equa-
tion (2.1) can be represented succinctly as a factor graph. The variable nodes x0,
x1, x2 denote the robot state over time, while p0, p1, p2 signify the landmarks in
the map. The factor nodes u1, u2 show relative motion constraints, while the z𝑖

factors represent noisy landmark observations. By emphasizing the factorization of
the posterior distribution through independence relations, this interpretation reveals
the sparse nature of the problem and insights into efficient solution strategies.

In addition, as mentioned previously, we assume that the association between

poses, landmarks, and observations are known, which is represented in the graph

by the edges between variables nodes and factor nodes. Furthermore, note that

both types of factors are not required to produce a valid solution and often only a

single type is used in practice. For instance, traditional SfM and bundle adjustment

pipelines do not use relative motion factors, while pose graph SLAM methods such

as LSD-SLAM [56] do not use landmark factors by encoding depth information into

the motion factors themselves.

Computing solutions to the SLAM problem can now be considered a special case

of performing inference on probabilistic graphical models, where a number of relevant

algorithms exist in the literature [116, 111]. Furthermore, it should be apparent that

the graph structure induced by the SLAM problem is sparse — i.e., the number of

edges in the graph |ℰ| is far lower than that of a fully connected graph. This additional

structure can be exploited for further computational savings, allowing for large SLAM

problems to be solved quickly, in many cases in real time [117, 44, 103, 102, 177].
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2.1.2 Backend vs. Frontend

Given the graph interpretation of SLAM, a distinction can be made between generat-

ing the graph for a particular SLAM instance and optimizing the function represented

by that graph for a solution. We will refer to the former process — that of generating

the SLAM graph from input data — as the SLAM frontend and refer to the latter

process — that of finding a solution for a given graph — as the SLAM backend. Much

of the current work in monocular SLAM deals more directly with the frontend, as

generating factors is more specific to the particulars of the input data (images in

this thesis). Nonetheless, it is worth covering a few of the influential SLAM backend

solvers in more detail (Section 2.2) before venturing to the frontend (Section 2.3).

2.2 Backend

Before discussing modern smoothing-based SLAM solvers in Section 2.2.2, we will

first detail the filter-based approaches that were popular during the early days of

SLAM in Section 2.2.1.

2.2.1 Filter-based Approaches

Before the full implications of the graphical nature of SLAM were widely understood

and appreciated, initial solutions modeled it as a state estimation problem to be solved

via recursive Bayesian estimators or nonlinear filters, such as the extended Kalman

filter (EKF), unscented Kalman filter (UKF) [226], particle filter [49], sparse extended

information filter (SEIF) [219, 225], and delayed-state filter [60, 61]. Posing SLAM

as a state estimation problem was natural initially, although it is now considered to

be a special case of the more general graphical interpretation.

Early filter-based SLAM solutions used EKFs to compute the posterior distri-

bution of the map P and the most recent pose x𝑇 given the measurement history

Z = (𝑧1, . . . , 𝑧𝑇 ). These EKF-SLAM methods assumed a small number of point land-

marks or beacons with known data association [122, 123, 200, 47]. Marginalizing out
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the past poses X− = (x0, . . . , x𝑇 −1) from the posterior distribution in Equation (2.1)

yields the familiar recursive Bayesian update formula:

𝑝(x𝑇 , P|Z) =
∫︁

X−
𝑃 (X, P|Z)𝑑X− (2.2)

= 𝑝(x𝑇 , P|z𝑇 , Z−) (2.3)

∝ 𝑝(z𝑇 |x𝑇 , P)𝑝(x𝑇 , P|Z−) (2.4)

= 𝑝(z𝑇 |x𝑇 , P)
∫︁

x𝑇 −1
𝑝(x𝑇 |x𝑇 −1)𝑝(x𝑇 −1, P|Z−)𝑑x𝑇 −1, (2.5)

where Z− = (z1, . . . , z𝑇 −1). The act of marginalizing out past poses has the effect of

eliminating those variables from the factor graph in 2-1 and introducing new factors

between the remaining variables.

The following zero-mean, additive-Gaussian noise process and measurement mod-

els are generally assumed:

x𝑖 = 𝑓(x𝑖−1) + 𝑤𝑖, 𝑤𝑖 ∼ 𝒩 (0, 𝑊 ) (2.6)

z𝑖 = ℎ(x𝑖𝑖
, p𝑗𝑖

) + 𝑣𝑖, , 𝑣𝑖 ∼ 𝒩 (0, 𝑉 ). (2.7)

When the prior 𝑝(x0) is assumed to be Gaussian and the process and measure-

ment models are differentiable, the Bayesian update equations can be computed in

closed form (the well-known Kalman filter equations and nonlinear variants). Non-

differentiable process and measurements models can also be supported using the

UKF [226].

Particle filters [49] relax the Gaussian assumption of Kalman Filter-based methods

and represent the state using a finite set of samples. These samples are propagated

in time using the process model 𝑓(x𝑖−1) and then weighted and resampled using

the measurement model ℎ(x𝑖𝑖
, p𝑗𝑖

). Particle filters were first applied for localization

given a known map in Dellaert et al. [43], Fox et al. [66], and Thrun et al. [218].

One of the earliest particle filter approach to full SLAM is the FastSLAM algorithm

of Montemerlo et al. [140, 141], which exploits Rao-Blackwellization to overcome the

curse of dimensionality suffered by traditional particle filters. Typically, the num-
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ber of samples required by a particle filter scales exponentially with the state space

dimension (the dimension of the pose history X and map P in the SLAM case).

Rao-Blackwellization allows significantly fewer particles to be used by partitioning

the filter state such that the distribution of some state variables can be represented

analytically conditioned on samples from the marginal of the remaining state vari-

ables.

In the SLAM context, the key insight is to apply the chain rule to the posterior

such that the distribution over the landmarks factorizes:

𝑝(X, P|Z) = 𝑝(X|Z)𝑝(P|X, Z) (2.8)

= 𝑝(X|Z)
𝑀∏︁

𝑗=1
𝑝(p𝑗|X, Z). (2.9)

The conditional independence of the landmarks P given the trajectory X is readily

apparent when the factor graph in Figure 2-1 is considered. Each landmark variable

p𝑗 ∈ P can now be represented analytically with (for example) a Gaussian distribu-

tion, while only the pose variables need to be approximated with samples. Further-

more, the sampling the pose history X can be done incrementally by sampling a new

pose for each particle at each timestep.

2.2.2 Smoothing-based Approaches

While the aforementioned filter-based approaches worked well for small-scale 2D prob-

lems, their limitations became apparent as SLAM moved to 3D, the process and

measurement models involved (as described in Equation 2.6) became more and more

nonlinear, and the scale of the problems under investigation grew with both the pose

history and map size.

First and foremost, the computational complexity of the EKF precludes large

maps from being considered since the full covariance matrix over the current pose

and landmarks has to be maintained and inverted with each new measurement. Fur-

thermore, marginalizing out past poses has the side effect of introducing correlations
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between otherwise unrelated state variables, ensuring that the covariance matrix be-

comes dense over time. Marginalization also makes any errors introduced by the

linearization process permanent, which can lead to inconsistent solutions [101].

Smoothing-based approaches, on the other hand, sidestep these issues by solving

for the entire pose trajectory X (or a spatially distributed subset of the trajectory)

along with the map P. Retaining all the variables in X may seem to substantially

increase the computational complexity of the estimation, but the key intuition is

that when past poses are not marginalized away, the sparse structure of the SLAM

problem, as indicated by the factor graph in Figure 2-1, can still be maintained,

allowing for solutions to be computed efficiently, despite the increase in the number

of poses.

Strasdat et al. [204, 205] directly analyze the strengths and weaknesses of fil-

ters versus smoothing-based methods in the context of monocular SLAM, with the

filtering-based approach of Eade and Drummond [53] and the smoothing-based ap-

proach of Klein and Murray [110] as reference algorithms. Using a combination of

simulated and real imagery, they compare the accuracy of each type of approach in

relation to the computational cost required to generate a solution. Except when com-

putational resources are extremely limited, smoothing-based solutions are judged to

be preferred over filtering-based solutions.

Consider the posterior distribution 𝑝(X, P|Z) from Equation (2.1) once more. If

we assume the same motion and measurement models as described in Equation (2.6),

then maximizing the posterior can be framed as a nonlinear least squares problem:

arg max
X,P

𝑝(X, P|Z) = arg min
X,P

− log 𝑝(X, P|Z) (2.10)

= arg min
X,P

{︃
||x0 − 𝜇0||2Σ0 +

𝑇∑︁
𝑖=1
||x𝑖 − 𝑓(x𝑖−1)||2𝑊

+
𝐾∑︁

𝑘=1
||z𝑘 − ℎ(x𝑖𝑘

, p𝑖𝑘
)||2𝑉

}︃
. (2.11)

When optimized using Gauss-Newton or Levenberg-Marquardt [156], the quadratic

approximation to this objective can be described by ||Ax−b||2, for x =
[︂
X𝑇 P𝑇

]︂𝑇

.
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The measurement Jacobian A obtained by linearizing 𝑓 and ℎ is usually sparse, as is

the information matrix A𝑇 A, both of which can be derived from the factor graph in

Figure 2-1.

This large, sparse nonlinear least squares problem can be solved efficiently in a

number of ways [132, 220, 114, 44] and has a large crossover with Structure-from-

Motion (SfM) and bundle adjustment [222, 45, 201, 189, 4, 129, 113]. Recent ap-

proaches compute solutions to Equation (2.10) incrementally, which results in signif-

icant computational savings since the new factors that are added to the graph as the

robot explores typically only affect nodes in the recent past [103, 102, 177, 232].

More sophisticated techniques from the optimization literature, such as convex

relaxation, Lagrangian duality, and semi-definite programming, are also being ex-

plored to produce SLAM solutions with specific guarantees on optimality [176, 29,

175, 27, 28], especially in the presence of outlier measurements or incorrect data asso-

ciations [235, 234]. Note that the optimization problem in Equation (2.10) is generally

non-convex and thus convergence is only guaranteed to a local minimum, which may

be arbitrarily bad based on the initialization point. These new approaches reformu-

late the optimization using the techniques mentioned to either bound the solution

quality or certify when the solution is optimal.

2.3 Frontend

Given a set of relative motion factors and landmark measurement factors, we can pass

them off to a nonlinear least squares solver (such as iSAM [103, 102]) to compute the

optimal pose trajectory X and map P. Considerable effort must be exerted, however,

to extract these factors from raw sensor data, which in the passive monocular camera

case is a sequence of images. This section will outline the basic steps to compute

relative motion and landmark factors from monocular imagery. As previously men-

tioned, both types of factors are not required to produce a valid solution and often

only a single type is used in practice.
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2.3.1 Epipolar Geometry

The factors that we would like to extract from a given video sequence are typically

defined by the epipolar geometry generated by the camera’s extrinsic parameters (i.e.,

the camera poses) and intrinsic parameters (i.e., focal length and principal point) [89].

Consider the scenario depicted in Figure 2-2 with two images 𝐼1 and 𝐼2 from a video

sequence with relative transform T1
2 ∈ SE(3) between the camera poses. The 3D

landmark p1 projects into 𝐼1 as pixel u1, as do all points along the ray marked in

red. This ray projects into 𝐼2 as the line in green — the epipolar line. The pixel

associated with p1 in 𝐼2 must lie along this line. Now, if we knew T1
2, we would be

able to compute the epipolar line and search for the pixel that matches u1 along the

line. With the association we could then estimate the depth for p1. On the other

hand, if we knew the association, we could then back out T1
2. The latter process of

estimating the relative transformations between camera poses is called visual odometry

and will be discussed in Section 2.3.3. The former process of computing depth from

pixel associations is called depth estimation (or stereopsis) and will be detailed in

Section 2.5. It should be noted that both problems rely on the ability to accurately

and robustly associate pixels across images.

2.3.2 Visual Landmark Factors

Visual landmark factors constrain the camera poses X and landmarks P using obser-

vations of the landmarks in the image data. These factors generally fall into two broad

categories: feature-based methods, which estimate the camera motion as a function

of the reprojection error of the landmark observations from frame to frame, or direct

methods, which estimate the camera motion as a function of the photometric error of

the landmark observations from frame to frame.

Feature-based methods appeared much earlier than direct methods, with seminal

work dating back to the 1980s [128, 88, 142, 136, 137]. Factors are generated by

computing a small number of salient features (e.g., corners, lines, or blobs) that

can be reliably detected in the image stream and either tracking or matching these
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Figure 2-2: In this scenario we have two images 𝐼1 and 𝐼2 taken from two different
poses, with the relative transformation between the two given by T1

2. The 3D point
p1 projects into 𝐼1 as pixel u1, as do all points along the ray in red. This ray projects
into 𝐼2 as the line in green — the epipolar line. The pixel in 𝐼2 that is associated with
p1 must lie along this line.

features across frames. Note that this process of tracking a feature from frame to

frame implicitly assumes that the same feature can be reliably detected — essentially

solving the data association problem. A single landmark is then initialized for each

feature track and a factor is created that measures the discrepancy between the

observed feature positions and the projection of the landmark into the image domain

at a particular pose – otherwise known as reprojection error.

If landmark p𝑗 is observed in an image taken from pose x𝑖, the reprojection error

is given by:

𝑒𝑟𝑒𝑝𝑟𝑜𝑗(x𝑖, p𝑗) = ||z𝑘 − 𝜋(𝐾x−1
𝑖 p𝑗)||, (2.12)

where z𝑘 ∈ Ω is the tracked feature position and 𝐾 ∈ R3×3 is the camera intrinsic

matrix. The function 𝜋(𝑥, 𝑦, 𝑧) = (𝑥/𝑧, 𝑦/𝑧) denotes perspective projection. Note

that here p𝑗 is parameterized by its 3D location in Cartesian coordinates, but other
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landmark forms are possible, such as the inverse depth parameterization, which uses

a pixel ray in a given image coupled with an inverse depth value to represent the

point [33].

There is a large body of work in the computer vision literature on detecting,

tracking, and matching sparse features across images. Feature detection typically

involves efficiently selecting pixels in the image that are both distinctive and robust to

scale, rotation, or lighting changes. The earliest detectors attempted to find corners in

images by comparing patches around candidate pixels with slightly shifted versions.

Moravec corners [142], for example, compute the sum-of-squared-differences (SSD)

between the template patch and shifted patches along a set of cardinal directions,

issuing a detection if the SSD was high for all directions (the mismatch between the

patch and its shifted versions implies the pixel is distinctive). Harris corners [87]

and Shi-Tomasi corners [198] improved upon this idea by computing a quadratic

approximation to the SSD cost at the candidate pixel and labeling it a corner if the

two eigenvalues of the Hessian (or some approximation to them) were both large.

Rather than directly computing the Hessian of the SSD cost, FAST (Features from

Accelerated Segment Test) detectors [180] find corners by performing a binary test

between the candidate pixel and a set of its neighbors — if a contiguous number

𝑛 of those neighbors are all brighter or darker than the center pixel, the candidate

pixel is labeled a corner. Blobs, computed using the Difference-of-Gaussians (DoG) or

Determinant-of-the-Hessian approaches, are also popular feature detectors [130, 13].

Once a set of features are detected, they must be either tracked into the next

frame (usually called sparse optical flow) or matched across different images. Feature

tracking can be accomplished by performing a nonlinear least squares optimization to

minimize the SSD between a patch around the feature in one image and its projection

into the second image (usually called Lucas-Kanade tracking) [133]. The famous

Kanade-Lucas-Tomasi (KLT) feature tracker uses this least squares approach with

Shi-Tomasi corners [221]. Feature matching typically involves computing a robust

descriptor vector for the feature and performing brute-force, nearest-neighbor, or

RANSAC [63] matching with outlier rejection. Just as there are many approaches to
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feature detection, there are many variations on computing robust (i.e., scale, rotation,

illumination, noise invariant) descriptors. SIFT [130] and HoG [40] descriptors are

based on histograms of gradient orientations around the feature, while SURF [13]

features use the sum of Haar-like wavelet responses. BRIEF [26], ORB [182], and

Census [238] features all use a series of comparison tests between the feature and a

set of neighbors to construct a binary descriptor vector.

Direct landmark factors were developed more recently and aim to do away with ex-

plicit feature detection and tracking or matching [55, 229]. They use similar principles

to factors based on features, but minimize photometric error rather than reprojection

error. Whereas reprojection error measures the consistency of the camera poses and

landmarks with tracked feature locations, photometric error measures the consistency

of the poses and landmarks with the raw image intensities.

Suppose that landmark p𝑗 is observed in two images: image 𝐼𝑖 taken from pose

x𝑖 and 𝐼𝑘 taken from pose x𝑘. We will interpret the images 𝐼𝑖, 𝐼𝑘 : Ω → R as scalar-

valued functions from the image domain Ω ⊂ R2 to R. The photometric error relating

x𝑖, p𝑗, and x𝑘 is then given by:

𝑒𝑝ℎ𝑜𝑡𝑜(x𝑖, p𝑗, x𝑘) = ||𝐼𝑖(𝜋(x−1
𝑖 p𝑗))− 𝐼𝑘(𝜋(x−1

𝑘 p𝑗))||. (2.13)

It is common to sum the photometric error in a small patch of pixels.

Direct visual landmarks methods possess some notable advantages to feature-

based approaches. Since they rely on raw pixel intensities, no feature detection or

extraction steps need to be performed, which can often be expensive. Not relying on

salient features also means that more subtle (or general) information can be applied to

the optimization — for example any pixel with gradient information can influence the

optimization, while feature-based methods rely on distinctive corner or blob detection.

Furthermore, the feature matching process (i.e., detecting the same features reliably

in each image), is usually prone to outliers and false matches, which can wreack havoc

on the factor graph solution and is why RANSAC [63] is usually employed to remove

false matches. Direct methods, on the other hand, may degrade more gracefully with
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the presence of outliers, in addition to other forms of noise like motion blur. Care

must be taken, however, to ensure that the appearance and lighting of the scene does

not change over time to ensure that the photometric error is minimized at the true

poses and landmark values.

2.3.3 Visual Odometry Factors

Visual odometry factors constrain the relative motion between the camera poses X

using primarily the image data, although a physics-based model over plausible cam-

era motion may sometimes be used to augment the visual information. Like visual

landmark factors, they can be characterized as either feature-based or direct.

Feature-based visual odometry factors rely on the same detection and tracking

strategies outlined in Section 2.3.2. Once a set of features has been associated between

two images, the 8-Point Algorithm of [128] or the later 5-Point Algorithm of [154, 155]

can be used in conjunction with RANSAC [63] to extract the relative transform

between the two camera poses up to an unknown scale factor. (This scale ambiguity

arises from the loss of absolute metric information that occurs when a 3D scene is

projected onto a 2D image. Since multiple scenes may project as the same image, it

is only possible to recover the scene geometry up to a scale factor.)

Consider Figure 2-2. Both the 8-Point and 5-Point algorithms exploit epipolar

constraints to estimate T1
2 ∈ SE(3) — the rigid body transform of camera 2 relative

to camera 1, composed of rotation R1
2 ∈ SO(3) and translation t1

2 ∈ R3 — from

observed images 𝐼1 and 𝐼2. Note that the vector t1
2 and the vector ū1 (the pixel u1 in

homogeneous coordinates) define a plane — the epipolar plane. The normal vector of

this plane is given by

t1
2 × ū1 =

[︁
t1

2

]︁
×

ū1, (2.14)
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where if t1
2 =

[︂
𝑥 𝑦 𝑧

]︂𝑇

, the skew-symmetric matrix [t1
2]× is defined as

[︁
t1

2

]︁
×

=

⎡⎢⎢⎢⎢⎢⎣
0 −𝑧 𝑦

𝑧 0 −𝑥

−𝑦 𝑥 0

⎤⎥⎥⎥⎥⎥⎦ . (2.15)

This normal vector must be perpendicular to all vectors defined in the plane, including

p1 − t1
2 ∝ R1

2ū2, where u2 is the projection of p1 into 𝐼2. Thus,

(R1
2ū2)𝑇

[︁
t1

2

]︁
×

ū1 = ū𝑇
2 R2

1

[︁
t1

2

]︁
×

ū1 (2.16)

= ū𝑇
2 Eū1 (2.17)

= 0. (2.18)

The matrix E = R2
1 [t1

2]× is called the essential matrix and the constraint ū𝑇
2 Eū1 = 0

must hold for all pixels u1, u2 that are associated with the same 3D point p1. Given a

set of associated pixels, E can be estimated by solving the linear system of equations

induced by the ū𝑇
2 Eū1 = 0 constraints for each association. The rotation R1

2 and

translation t1
2 can then be recovered (up to scale) using singular value decomposition

(SVD). As their names suggest, the 8-Point and 5-Point algorithms require a minimum

of 8 and 5 feature associations, respectively. Once T1
2 has been estimated, a factor

can be added to the graph that compares T1
2 to the value given directly by the current

estimates for x1 and x2.

Rather than extracting and tracking or matching features, direct methods estimate

the rigid body motion between the two camera poses by incrementally aligning the

raw pixel values of the two images. Depth information is required for the subset of

pixels used to constrain the poses, however. The combination of depth information

and an initial estimate of the transform T1
2 (e.g., the identity) allows pixels in 𝐼1

to be projected into 𝐼2. The transform is then iteratively refined by minimizing

the photometric error between the projected (or warped) version of 𝐼1 and 𝐼2. This

optimization is usually framed as a Lucas-Kanade [133] style nonlinear least squares
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problem:

T̂1
2 = arg min

T∈SE(3)

∑︁
u∈Ω𝐷

||𝐼2(𝑤(u, 𝐷(u), T))− 𝐼1(u)||2, (2.19)

where the warp function 𝑤 projects pixel u into 𝐼2 assuming depth 𝐷(u) and relative

pose T. The set Ω𝐷 is the set of pixels that have depths and can be a sparse sampling

of pixels [65], the pixels in 𝐼1 with high-gradient [58], or every pixel [153].

The objective in Equation (2.19) is usually minimized by performing Gauss-

Newton or Levenberg-Marquardt steps [156], which repeatedly solve quadratic ap-

proximations to the cost by linearizing the residual 𝐼2(𝑤(u, 𝐷(u), T)) − 𝐼1(u) in T.

This approximation is typically only valid for small warps and so-called coarse-to-fine

strategies often need to be employed to ensure a good solution [6, 16]. The optimiza-

tion in 2.19 is first performed at the coarsest level of a power-of-two image pyramid,

which removes high spatial frequency components from the images and allows a gross

estimate of the transform to be obtained. That coarse solution is then used to ini-

tialize the optimization at the next, higher resolution level where it is refined.

In addition, the 𝐿2 norm used in Equation (2.19) may be overly sensitive to out-

liers, so it is often replaced by a robust error metric [86, 125] and optimized using it-

eratively reweighted least squares (IRLS), where a weighted version of Equation (2.19)

is solved that approximates the solution using the robust norm [8, 17, 160]. For more

detail on Lucas-Kanade optimization, see the tutorial presented in [11].

Direct visual odometry methods have similar benefits as direct visual landmark

factors over their feature based counterparts. They do require depth information to

be recovered, however, which is typically more difficult to obtain than the camera pose

itself. The standard approaches to depth estimation will be detailed in Section 2.5.

2.4 Full Systems

This section will highlight important monocular SLAM pipelines, which combine the

building blocks from the preceding sections into fully functioning, real-time systems.
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We first discuss sparse approaches in Section 2.4.1, where a sparse point cloud map is

solved for directly in the SLAM graph, before covering dense methods in Section 2.4.2

and semi-dense methods in Section 2.4.3. Visual-inertial methods are then detail in

Section 2.4.4 followed by learning-based approaches in Section 2.4.5.

2.4.1 Sparse Methods

Sparse monocular SLAM methods maintain a sparse point cloud map and generally

use factors that minimize feature-based reprojection error. The first sparse monocular

SLAM system to operate in real-time at camera framerate is commonly attributed to

Davison [41], which used the EKF-SLAM backend described in Section 2.2.1 with a

sparse set of point landmarks initialized using Shi-Tomasi corners [198] and tracked

using an exhaustive SSD search inside an elliptical region determined by the land-

marks’ 3D uncertainty. While an important milestone, the approach suffered from

the shortcomings of EKF-SLAM outlined in Section 2.2.2 (e.g., the computational

complexity of the EKF constrains the number of poses and landmarks that can be

estimated). In order to maintain real-time pose estimation, the mapping component

was scaled back such that only tens of landmarks are maintained by the filter at

any point in time. Filter-based approaches based on FastSLAM[140, 141] were also

explored by Eade and Drummond [52, 51].

The Parallel Tracking and Mapping (PTAM) algorithm developed by Klein and

Murray[110] side-stepped the constraints imposed by filter-based approaches by split-

ting the tracking (i.e., visual odometry) and mapping computations into separate

threads that run in parallel at different rates. This approach allowed the least

squares/bundle adjustment techniques from offline SfM [222, 45, 201, 189, 4, 129, 113]

to be used in a real-time context. With tracking and mapping split into separate

threads, the least squares objective in Equation (2.10) can be solved efficiently in

parallel. In the tracking thread, the current camera pose is computed relative to a

past keyframe at framerate by holding the map points in Equation (2.10) fixed and

removing those that are outside the current view from the optimization. The mapping

thread can then optimize the full objective over the keyframe poses (a small subset
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of all available frames) and the landmarks at a lower rate, which allows many more

landmarks to be considered.

ORB-SLAM developed by Mur-Artal et al. [145, 147] improved upon the general

PTAM design by adding loop closure factors to constrain drift along with several

techniques to perform SLAM graph management. The choice of factors in graph-

based SLAM has a significant impact on both tracking and mapping accuracy. In

PTAM, for example, relative motion factors are added to the graph whenever a new

keyframe is initialized. If too few keyframes are created, tracking is likely to suffer

since the overlap between the current image and the keyframe is small. However,

if too many keyframes are created, then the backend least squares optimization can

become prohibitively slow. This same argument can be applied to the creation of

landmarks: too few and tracking may suffer, too many and the backend optimization

may crawl to a halt. ORB-SLAM’s solution to this problem is to liberally add both

landmarks and keyframe factors to the SLAM graph, but prune the graph over time

such that only a small number of highly informative points and poses remain. This

allows for robust tracking even through erratic camera motion or low-texture regions,

but fast loop closing and low drift as well.

The Direct Sparse Odometry (DSO) method of Engel et al. [55] uses direct visual

landmark factors that minimize photometric error over a sparse set of map points.

Since it does not rely on feature detection or tracking, it can incorporate information

from all image regions that have intensity gradients, rather than only corners. It

also integrates a full photometric calibration into the optimization, which accounts

for exposure time, lens vignetting, and non-linear response functions. The Semi-

Direct Visual Odometry (SVO) algorithm of Forster et al. [65] is worth mentioning

as it is able to estimate poses extremely efficiently (at up to 300Hz on a commodity

laptop) and is one of the few approaches to produce experimental results from running

onboard an MAV. It is “semi-direct” in that it minimizes a mix of photometric and

reprojection factors.
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2.4.2 Dense Methods

Dense monocular SLAM methods differ from sparse methods in the density of points

estimated in the map P. While a few hundred map points may be observable in any

given camera image in a sparse system, thousands to hundreds of thousands of points

may be observable in each camera image in a dense system.

For example, the Dense Tracking and Mapping (DTAM) algorithm of Newcombe

et al. [153] combines the keyframe-based, parallel approach of PTAM with the horse-

power of the GPU to estimate a depth value for every pixel in each keyframe image.

Each DTAM keyframe contains a 3D cost volume that samples a range of inverse

depths per pixel. The stereo matching costs for each hypothetical inverse depth are

aggregated across all subsequent frames. A smooth, minimum-cost surface is then

extracted from the cost volume using a variational regularization approach by Cham-

bolle and Pock [31]. This smooth reconstruction is then used to densely track each

new frame using the coarse-to-fine Lucas-Kanade algorithm described in Section 2.3.3.

This approach has been extended in Pinies et al. [166] which uses a non-local total

variation (TV) regularizer that biases the solution to be piecewise planar (instead of

piecewise constant) and is thus better able to interpolate over textureless regions like

walls and floors.

The method of Graber et al. [78] takes the approach of densifying PTAM keyframes.

For each keyframe, a multi-view version of the stereo method described by Collins [35]

is used to construct depthmaps which are then fused into a voxel-based representation

called a signed-distance function (SDF). Each voxel of the SDF records the distance

to the nearest surface. The surface itself can then be generated by extracting the

zero-level set of the function. Similar to DTAM, variation regularization is applied

to enforce surface smoothness. The approach of Newcombe and Davison [152] also

densifies PTAM keyframes, building coarse meshes from sparse map points and then

refining the meshes using correspondences generated from a separate dense optical

flow process.

REMODE developed by Pizzoli et al. [167] uses a semi-direct visual odometry

47



method [65] to estimate camera poses and estimates keyframe depthmaps using a

Bayesian filter over each pixel that takes into account the probability of occlusions

and outliers. The depthmap is then smoothed using a variational regularizer that is

weighted by the confidence of each depth.

The MonoFusion algorithm of Pradeep et al. [172] also uses a sparse monocular

SLAM pipeline to compute poses, but does not utilize keyframes for dense mapping.

Instead, depthmaps are computed for each image by performing a modified version of

PatchMatch Stereo [19] using variable baseline comparison images. The depthmaps

are then fused into an SDF using the method of Curless and Levoy [37] before the

surface is extracted via raycasting. Unlike the other methods mentioned, no explicit

regularization is performed. The fusion of depthmaps from every live image (as

opposed from a smaller set of keyframes) is enough to constrain the surface to be

smooth. The MobileFusion algorithm [159] extends MonoFusion to run at 25 Hz on

a commodity smartphone, but sacrifices the volume under reconstruction and other

resolution parameters.

2.4.3 Semi-Dense Methods

Although the dense approaches outlined in Section 2.4.2 demonstrate impressive

reconstruction results, they are computationally expensive, often require high-end

GPUs to run in real-time, and are limited to small desk-sized or room-sized environ-

ments. Semi-dense methods sit in between sparse and dense approaches in terms of

computational efficiency, reconstruction quality, and map scale.

The Large-Scale Direct-SLAM (LSD-SLAM) algorithm of Engel et al. [58, 56] es-

timates keyframe depthmaps using a per-pixel probabilistic filter similar to Pizzoli

et al. [167], but only does so for the high-gradient pixels. Since low-texture image

regions are ignored, a significant speedup can be obtained and a GPU is not required.

Furthermore, since no volumetric fusion is attempted, the scale of the reconstructed

environments can be increased substantially. Once generated, the point clouds pro-

duced from the semi-dense keyframe depthmaps are incrementally aligned using a

least squares backend solver [117], but with the poses defined in Sim(3) instead of
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SO(3) to account for scale drift. New images are tracked using the direct visual

odometry approach described in Section 2.3.3 over the high-gradient pixels.

A similar approach was proposed in Mur-Artal and Tardós [146] that uses ORB-

SLAM [145] internally to compute poses, but then estimates a semi-dense depthmap

for each keyframe. Each keyframe depthmap is computed by performing a direct

epipolar search in 𝑁 neighboring keyframes and probabilistically fusing the 𝑁 depth

measurements measurements before applying an inter-keyframe consistency check to

remove outliers.

2.4.4 Visual-Inertial Methods

Visual-inertial monocular SLAM methods fuse the monocular camera with measure-

ments from an IMU. The IMU allows the SLAM system to maintain tracking through

degraded visual environments, especially low-texture scenes where image gradients

provide no information to localize the camera. The IMU also provides linear acceler-

ation measurements that allow the metric scale of the SLAM solution to be inferred.

The Multi-State Constraint Kalman Filter (MSCKF) from Mourikis and Roume-

liotis [143] tracks sparse features through the image stream then utilizes an EKF

over a sliding window of keyframes to infer the camera poses from the feature tracks

and IMU measurements. By projecting the filter residuals onto the null space of the

measurement Jacobian matrix, the MSCKF does not require the landmark positions

to be included in the filter state, greatly improving speed.

Smoothing-based visual-inertial methods such as the approach from Leutenegger

et al. [124] insert relative motion factors computed from the IMU measurements into

the SLAM factor graph between keyframe poses. Pre-integrating the IMU measure-

ments correctly between keyframe poses so that the variables in the graph can be

easily re-linearized was explored in the methods of Forster et al. [64] and Qin et

al [173]. The approach of Forster et al. [64] also adapted the techniques of Mourikis

and Roumeliotis [143] to the smoothing setting, improving speed by cleverly removing

the map points from the optimization. The method of Rosinal et al. [179, 178] extends

the visual-inertial paradigm by adding mesh reconstruction and semantic labeling to
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the SLAM map.

2.4.5 Learning-based Methods

SLAM methods that rely on machine learning techniques have increased in popular-

ity in recent years, driven by the rapid application of deep learning to a variety of

computer vision tasks. Unlike the aforementioned approaches, learning-based SLAM

systems attempt to predict or regress the camera poses and map using models trained

from offline data, generally relying less on the epipolar constraints induced by live

imagery. For example, the method of Wang et al. [230] uses a recurrent convolutional

neural network (RCNN) [48] that extracts features from stacks of input images using

a convolutional neural network (CNN) before passing the features through two re-

current, long-short-term memory (LSTM) [93] subnetworks that directly regress the

image poses.

The DeMoN method of Ummenhofer [223] uses a chain of encoder-decoder net-

works that takes in a pair of consecutive images and outputs a depthmap of the first

image and the relative pose of the second. The encoder-network chain is composed

of an initial network that computes optical flow, depth, and camera motion, followed

by a series of upsampling and refinement networks. It also regresses surface normals

and confidence metric as intermediate values. Supervised losses using groundtruth

depthmaps, optical flow, surface normals, and camera poses drive the training opti-

mization. The imagery used to train the network has become a standard benchmark

dataset for depth estimation problems.

While supervised methods like DeMoN offer impressive performance, obtaining

extensive groundtruth labels is difficult for large datasets. A growing trend in this

space is to leverage unsupervised (or self-supervised) training losses so that more var-

ied imagery can be used as training data. The UnDeepVO method of Li et al. [126],

the SfMLearner method of Zhou et al. [241], the Monodepth2 method of Godard et

al. [76], the SuperDepth method of Pillai et al. [164], and the PackNet-SfM method

of Guizilini et al. [84] all exploit this concept. Rather than relying on groundtruth

depthmaps, these approaches take as input a series of consecutive images and predict
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the depths and relative camera motion using stacks of CNNs. The depthmaps and

poses are then used to warp each image into the other coordinate frames. The pho-

tometric error between the warped images and the real images can then be used to

infer the network weights.

Recently, techniques that combine deep learning and traditional geometric SLAM

have been investigated. Zhan et al. [240] train two networks to estimate depth and

optical flow from a pair of images that are then used to improve conventional visual

odometry. The method of Bloesch et al. [20] replaces the point landmarks in the tra-

ditional monocular SLAM framework with a learned, low-dimensional feature vector

(or code) that represents an entire, dense depthmap. The SLAM graph consisting

of camera poses and depthmap codes is then optimized using classical techniques,

allowing for both dense and probabilistic inference. Czarnowski et al. [38] built upon

this technique to include local and global loop closures, keyframing, map mainte-

nance, and relocalization. The network from Tang and Tang [212] similarly uses a

compressed depthmap representation, but incorporates it into a fully differentiable

variant of bundle adjustment that can be optimized end-to-end.

2.5 Dense Monocular Depth Estimation

A significant portion of this thesis investigates a variation of the monocular SLAM

problem that we will refer to as dense monocular depth estimation. In this setting,

we attempt to estimate the 3D structure of a scene (or the depth of the scene) given

the images from a moving monocular camera. Crucially, for this modification of

the monocular SLAM problem we will assume that the intrinsics and extrinsics (i.e.,

poses) of the camera are known a priori or computed in a separate process such

as through one of the sparse monocular SLAM pipelines outlined in Section 2.4.1.

While some depth information can be computed using those sparse techniques, the

emphasis here will be on computing dense depth representations that encode the

surface geometry of the scene and allow for object modeling and novel view prediction.

To differentiate this problem from dense monocular SLAM, remember that in the
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(a) Epipolar Search (b) Triangulation Given Correspondence

Figure 2-3: Depth estimation from a set of images is fundamentally a pixel association
or correspondence problem. With knowledge of the relative transform T1

2 , the
epipolar line corresponding to query pixel u1 can be computed in 𝐼2. By searching
for the pixel along this line that matches u1 as depicted in Figure 2-3a, the depth for
u1 can be estimated via triangulation as in Figure 2-3b.

dense monocular SLAM case the camera poses are unknown and must be estimated

along with the scene depth. There is crossover between the two problems given

their similarities, of course, but we will reserve the term “dense monocular depth

estimation” for techniques that do not estimate or modify the camera poses.

Despite the additional simplifying assumptions, dense monocular depth estimation

is still a difficult inference problem for many of the same reasons as dense monocular

SLAM. Estimating a depth value for every pixel in an input image requires serious

computational horsepower and sophisticated algorithms to be tractable. Furthermore,

associating pixels across images taken from disparate viewpoints, which forms the

backbone of monocular depth estimation, is a non-trivial task, especially when it

must be attempted for every input pixel. The following sections will briefly outline

the traditional techniques to tackling these issues, including spatial regularization in

Section 2.5.2 and learning-based methods in Section 2.5.3.
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2.5.1 Depth Estimation via Stereopsis

The roots of the depth estimation problem lie predominantly in the stereo vision

literature, where the special cases of two-frame rectified stereo depth estimation [10,

74, 35] and multi-view stereo (MVS) depth estimation [77, 68, 91] have been studied

extensively (see [188, 193, 210] for more information). While rectified stereo methods

traditionally leverage multiple cameras that are rigidly mounted and triggered with

specialized hardware, MVS is very aligned with our problem of dense monocular depth

estimation. In fact, dense monocular depth estimation may be considered a specific

variant of MVS, where additional emphasis is placed on processing images from a

single moving camera in real-time, while traditional MVS generally focuses more on

imagery from multiple cameras and is more often an offline process.

As argued previously, depth estimation is fundamentally a data association or

correspondence problem between the pixels of two images captured from different

views. Consider Figure 2-3 where a two-frame depth estimation problem is posed.

Suppose we wish to estimate the depth for pixel u1 in 𝐼1. Since the camera poses are

known, we can compute the epipolar line corresponding to u1 in 𝐼2. The pixel in 𝐼2

corresponding to u1 must lie along this line. We can thus search along this line for a

pixel that matches u1 (usually a neighborhood or patch around each candidate pixel

is considered to make the matching more robust). The optimal match û2 can then

be triangulated with u1 to estimate the depth of the 3D point that projects onto the

two pixels. Note that this process assumes that the neighborhood of pixels around

u1 and û2 are visually similar. This is typically called the Lambertian assumption,

where the pixels of 3D points remain visually similar when observed from multiple

viewpoints. There are a variety of matching costs that can be used to associate

pixels including SSD, sum-of-absolute differences (SAD), normalized-cross-correlation

(NCC), and binary matching costs such as the Census Transform [238] (all similar to

the work in sparse feature matching).

Nearly all MVS and dense depth estimation algorithms are built on these founda-

tional blocks of epipolar search, patch matching, and triangulation. In addition, the
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representation of the depth information is another important design choice as it of-

ten dictates how depth information from multiple comparison frames are fused. One

standard approach is to define a 2D depthmap, inverse depthmap, or disparity map

(they are usually interchangeable) [209, 106, 71]. A depthmap (or inverse depthmap)

is a scalar function over the image domain 𝐷 : Ω→ R+ that maps each pixel location

to a depth (or inverse depth). A disparity map is similar, but maps each pixel to

disparity, which is the motion that a pixel undergoes when projected into another

image. If the depth of a point is large compared to the baseline between the cameras,

the pixel will not change much between frames and will thus exhibit low disparity.

If the depth is small compared to the camera baselines, the pixel will undergo larger

motion between frames and the resulting disparity will be large. Depth information

can be fused in these representations using probabilistic filtering [58, 56, 65].

Voxel or grid-based approaches are another popular way to represent and fuse

depth information. Each voxel can be used to represent the aggregated matching

cost from each stereo comparison with high-cost voxels “carved” away [194, 118, 23].

Voxels can also represent the color of the scene (known as voxel coloring) [36] or the

distance to the nearest surface [181, 62, 37, 77]. Triangular meshes [67] and other

deformable models [215, 216] are also viable alternatives.

An important form of MVS that combines both depthmap and voxel-based tech-

niques was presented by Collins [35]. Dubbed Plane Sweep Stereo, this method refor-

mulates the epipolar search, patch matching, and triangulation paradigm to efficiently

compute dense depthmaps from multiple images. Rather than perform an epipolar

search for each pixel individually, Plane Sweep first designates a privileged reference

frame from all the input images. A cost volume in this coordinate frame is then

defined by sampling a set of depth hypotheses over all the pixels. When all pixels

from the reference image are considered, each depth hypothesis induces a plane in the

reference coordinate frame. Each neighboring image is then projected onto each plane

using a homography transformation. A cost volume is then produced by taking the

difference between each projected image and the reference image. The depth sample

that minimizes the matching costs can then be extracted for each pixel, producing
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a dense depthmap. Fusing information from multiple images can be achieved simply

by averaging the cost volumes generated by each reference image - comparison image

pair.

There is one important functional block that has been omitted from the discus-

sion so far — namely spatial regularization. As one can imagine, the epipolar search,

patch matching, triangulation, and fusion steps described above are all subject to

noise, errors, and outliers, and when used in isolation typically generate poor quality

reconstructions. Furthermore, the depths in large textureless image regions are gen-

erally unobservable since the lack of gradient information cripples the patch matching

process.

Traditional image filtering techniques, such as low-pass filters or median filters,

are sometimes applied to the resulting depthmaps to reduce noise and remove outliers.

These filters can also be generalized to 3D and applied to the matching cost volume

before extracting depths, which is sometimes referred to as cost aggregation [193].

Since filters of this type only incorporate information locally around each pixel or

voxel, these denoising techniques are usually referred to as local methods.

More sophisticated regularization schemes have been developed, however, that at-

tempt to enforce certain priors on the overall structure of the scene, such as smooth-

ness, planarity, or other properties. Rather than only consider local information to

produce smoothed reconstructions, these methods optimize over all the input data,

such as a the entire noisy depthmap or cost volume, and hence are generally referred

to as global methods. A brief overview of these techniques is presented in the following

section.

2.5.2 Spatial Regularization

The standard approach to applying global spatial regularization to depth information

is to pose the problem as energy minimization [215, 18, 187, 74] where the regularized

solution must balance smoothness with fitting the input data. We define an energy

functional 𝐸(𝐷) for a depthmap 𝐷 : Ω → R+, by combining two cost functionals: a
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smoothness cost 𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝐷) and a data fitting cost 𝐸𝑑𝑎𝑡𝑎(𝐷):

𝐸(𝐷) = 𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝐷) + 𝜆𝐸𝑑𝑎𝑡𝑎(𝐷). (2.20)

The scalar term 𝜆 > 0 controls the tradeoff between smoothness and data fit. Usually

𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝐷) is some functional that penalizes non-smoothness, for example some norm

on the gradient ∇𝐷 (for discrete data, this could be approximated using forward or

central differences). The data fit term 𝐸𝑑𝑎𝑡𝑎(𝐷) typically is a measures the difference

between the smoothed solution 𝐷 and the noisy input data.

One way to derive the energy terms above is to define a probability distribution

over the depthmap pixels using a Markov Random Field (MRF) [111]. The Markov

properties of the MRF allow smoothness constraints to be introduced quite easily

by correlating neighboring depths. Inference can then be performed on the MRF to

extract the optimal depthmap using min-flow/max-cut-type algorithms [21, 181, 98,

224, 112].

A faster (but less robust) approach can be employed for the rectified two-frame

stereo case. Rectification is a common preprocessing step that warps the two images

such that all epipolar lines are parallel and aligned along the image rows. The epipo-

lar search can then be performed by walking along each image row independently.

Dynamic Programming can then be used to find the optimal association between the

left image row and the right image row [10, 157, 15, 14, 73].

The specific forms of the energy terms in Equation (2.20) can greatly impact the

reconstruction quality. For most types of regularization problems (i.e., not depth

regularization), a squared 𝐿2 norm for both 𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝐷) and 𝐸𝑑𝑎𝑡𝑎(𝐷) would be a

natural first choice, for example:

𝐸𝑑𝑎𝑡𝑎(𝐷) =
∫︁

Ω
||𝐷(u)− 𝑔(u)||2Σ 𝑑u (2.21)

𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝐷) =
∫︁

Ω
||∇𝐷(u)||2Γ 𝑑u, (2.22)

where 𝑔(u) denotes the noisy input data.
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Note that these functions essentially correspond to the special case of Gaussian

measurement model (with covariance Γ) and Gaussian prior (with covariance Σ).

There are two problems with this approach, however. First, when applied to 𝐸𝑑𝑎𝑡𝑎(𝐷),

the quadratic nature of the squared 𝐿2 norm makes the solution extremely sensitive to

outliers or errors in the input data. Second, when applied to 𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝐷), the solution

is unable to undergo large discontinuities, which are common for depth data (consider

the edge between a near object and the faraway background).

An alternative choice for 𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝐷) that is able to enforce smoothness but capture

large discontinuities was proposed by Rudin et al. [183] and is commonly referred to

as the Total Variation (TV) regularizer:

𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝐷) =
∫︁

Ω
||∇𝐷(u)|| 𝑑u. (2.23)

By penalizing the 𝐿2 norm of the gradient (as opposed to the square of the 𝐿2 norm),

the TV regularizer allows functions to undergo sharp discontinuities (technically it

biases them to be piecewise constant). When combined with a squared 𝐿2 norm in

𝐸𝑑𝑎𝑡𝑎(𝐷), this approach is referred to as the TV-𝐿2 or Rudin-Osher-Fatemi (ROF)

model. One can replace the squared 𝐿2 data term with an 𝐿1 data term to add

robustness to outliers, which yields the TV-𝐿1 model, or replace the 𝐿2 norm in

𝐸𝑠𝑚𝑜𝑜𝑡ℎ with a Huber norm to yield the Huber-ROF model. A variety of optimiza-

tion schemes for objectives of this type have been proposed, typically leveraging the

Euler-Lagrange equation, non-smooth convex optimization, the proximal operator, or

primal-dual approaches [74, 144, 62, 168, 151, 59, 31].

2.5.3 Learned Depth Estimation

Section 2.5.1 outlined ways that depth could be estimated from monocular imagery

by exploiting epipolar constraints to find pixel correspondences that can then be

triangulated. Section 2.5.2 then described ways that prior structure could be applied

to the depth estimation problem to denoise estimates, remove outliers, and improve

reconstruction accuracy. In recent years, many researchers have explored replacing
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these components with deep neural networks that can be learned from data. For

example, rather than using the raw image intensities when comparing pixel patches,

more distinctive features can be learned that exploit higher-level semantic information

and global context to improve the matching process. Rather than using simple low-

pass filters or even mathematical priors defined a priori to denoise depths, filters

can be learned directly from training data that more accurately enforce real world

constraints.

Learning was first applied to the rectified stereo depth estimation problem. Zbon-

tar and LeCun [239], for example, proposed a network to regress matching costs from

small image patches, before using the costs in a classical pipeline. Mayer et al. [138]

developed a network that directly regresses disparity using stacks of convolutions and

deconvolutions. Kendall et al. [107] aggregate global context in the stereo cost volume

using 3D convolutions. Khamis et al. [108] similarly use 3D convolutions to aggre-

gate information in the cost volume, but significantly reduce the spatial resolution of

the volume for speed before applying image-guided refiners to upsample the result-

ing disparities. (We will see in Chapter 5 some of the limitations of the end-to-end

approaches that do not leverage known structure in the problem.)

Learning-based approaches to MVS depth estimation often follow the Plane Sweep

paradigm described previously [35]. Yao et al. [237], for example, extract features

per image, transform them into the reference volume using a differentiable warp

operation, then regularize the costs using multi-scale 3D convolutions. Im et al. [96]

compute matching costs similarly, but refine the costs for each depth hypothesis

using the reference image features. Wang and Shen [227] compute a multi-view cost

volume using classical techniques, but then regress the depths using an encoder-

decoder network. Huang et al. [95], on the other hand, estimate depthmaps on 64×64

pixel patches before tiling the results to the input resolution.

There is also substantial interest in predicting depth directly from single monocu-

lar images instead of considering epipolar constraints induced from multiple images.

Eigen et al. [54] use a two-scale convolutional network that regresses depth using

supervised training. Similar to the learned SLAM methods outlined in Section 2.4.5,
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self-supervised approaches have also been developed that enforce photometric con-

sistency such as the method of Garg et al. [70], Godard et al. [75], and Poggi et

al. [169]. These methods are trained using calibrated stereo images (i.e., two images

taken from known poses), but only require a single image – without a known pose –

to generate depths at test time, broadening the applicability of these systems to tasks

where estimating pose may be difficult or intractable.

With an understanding of the state of both monocular SLAM and monocular

depth estimation, the subsequent chapters in this thesis will outline specific limita-

tions that prevent monocular SLAM and monocular depth estimation systems from

generalizing to more uncontrolled environments. We will then present solutions to

these problems that are enabled by untapped prior information along with targeted

applications of machine learning.
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Chapter 3

Fast Lightweight Mesh Estimation

This chapter describes a fast mesh reconstruction method that exploits the planar

structure of many environments of interest to dramatically accelerate the depth es-

timation process. As argued in previous chapters, estimating dense 3D geometry

from 2D images taken from a moving monocular camera is a fundamental problem in

computer vision with a wide range of applications in robotics and augmented reality

(AR). Though the visual tracking component of monocular simultaneous localiza-

tion and mapping (SLAM) has reached a certain level of maturity over the last ten

years [143, 64, 110, 65, 58, 145, 153], efficiently reconstructing dense environment

representations for autonomous navigation or AR on small size-weight-and-power

(SWaP) constrained platforms (such as mobile robots and smartphones) is still an

active research front. Current approaches either transmit information to a ground-

station for processing [231, 5, 39], sacrifice density [57, 56, 65, 145], run at significantly

reduced framerates [191, 192], or limit the reconstruction volume to small scenes [159]

or to past keyframes [80], all of which restrict their utility in practice, especially for

mobile robot navigation. In this chapter, we propose a novel monocular depth esti-

mation pipeline that enables dense geometry to be efficiently computed at upwards

of 230 Hz using less than one Intel i7 4820K CPU core — a small enough footprint

to fit completely onboard an autonomous micro-aerial vehicle (MAV), with sufficient

accuracy to enable closed-loop motion planning using the reconstructions.

Our key insight is to recognize that for many environments and applications,
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Figure 3-1: Fast Lightweight Mesh Estimation – FLaME generates 3D mesh recon-
structions from monocular images in real-time onboard computationally constrained
platforms. The key to the approach is a graph-based variational optimization frame-
work that allows for the mesh to be efficiently smoothed and refined. The top row of
images (from left to right) show the meshes computed onboard a small autonomous
robot flying at 3.5 meters-per-second as it avoids a tree. The bottom row shows the
current frame (left), the collision-free plan in pink (middle), and the dense depthmap
generated from the mesh (right) for each timestep along the approach.

the “every-pixel” methods that are currently in vogue for dense depth estimation

massively oversample scenes relative to their true geometric complexity. Many envi-

ronments of interest can be well approximated using a relatively small set of planes.

Consider the geometry of a city composed of a series of buildings. Each building typi-

cally has 5 exposed sides. Each side is mostly flat. Each building usually rests on a flat

groundplane. To first order, therefore, the geometry of a city can be well-described

as a finite set of planes or piecewise planar. It is unlikely that all 8 million depth

estimates in a 4K image – or even all 300 thousand depth estimates in a VGA image

– are necessary to encode the geometry for this type of scene. Indeed, if each plane is

composed of a set of triangles (as is common in computer graphics), and each triangle

requires only 3 different depth values (one for each triangle vertex), it is likely that far

fewer depth values would be needed to reconstruct the scene than the total number

of pixels in each image. More complicated environments, like forests, parks, or indoor

scenes, may require more planes and triangles than a city environment would need

to adequately capture the geometry, but a piecewise planar representation is a very

good approximation, especially for important tasks like obstacle avoidance and AR.
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Figure 3-2: Piecewise Planar Environments – Many environments of interest can
be well-approximated using a finite set of planes. Consider the environment on the
left with a brick wall. A dense, every-pixel depth estimation method might devote
thousands of depth estimates to encode the geometry. It can be described much more
succinctly, however, using sets of planes built from triangular meshes. As can be seen
on the right, only two triangles with a total of four depth estimates are needed to
capture the geometry of the wall.

Furthermore, oversampling scenes causes other problems in depth estimation.

Even if a scene is geometrically complex, the fine details may not be observable given

the baseline of the available camera images. For instance, moving a camera 1 cm

will not provide enough baseline to triangulate the depths for a complex scene 1 km

away. Attempting to estimate depth for every pixel in these regions wastes valuable

computational resources. In addition, these weakly observable pixels may be easily

corrupted by noise or matched incorrectly, degrading the quality of the produced

depths and requiring stronger or more sophisticated regularization schemes that are

often computationally demanding.

One naive workaround to the above issues might be to run an “every-pixel” method

on downsampled input images, but this degrades the observable depth information

even more by reducing the resolution at which pixels may be associated across frames.

Another workaround might be to sparsify the reconstruction by only estimating depth

for certain pixels across the image, but this, of course, introduces holes and breaks

most regularization approaches that require dense local information to filter out noise.

Instead, we exploit our observation that piecewise planar models can approxi-

63



mate many environments of interest well and propose a novel alternative that we

call FLaME (Fast Lightweight Mesh Estimation) that directly estimates a triangular

mesh of the scene (similar to the stereo work of Pillai et al. [165]). Our method is

advantageous for several reasons. First, meshes are more compact, efficient represen-

tations of the geometry and therefore require fewer depth estimates to encode the

scene for a given level of detail. Second, by interpreting the mesh as a graph we show

that we can exploit its connectivity structure to apply (and accelerate) state-of-the-

art second-order variational regularization techniques that otherwise require GPUs

to run online. Third, by reformulating the regularization objective in terms of the

vertices and edges of this graph, we allow the smoothing optimization to be both

incremental (in that new terms can be trivially added and removed as the graph is

modified over time) and keyframeless (in that the solution can be easily propagated

in time without restarting the optimization).

We show significant improvements over existing approaches on benchmark data

in terms of runtime, CPU load, density, and accuracy, and present results from flight

experiments running FLaME in-the-loop onboard a small MAV flying at up to 3.5

meters-per-second (see Figure 3-1 and 3-3).

3.1 Related Work

Dense monocular 3D reconstruction has its roots in the multi-view stereo (MVS) [68,

91, 77] and structure-from-motion (SfM) [4, 45] literature, where typical approaches

require offline batch processing. Real-time solutions have largely come from the

monocular SLAM community, beginning with small-scale sparse methods [41] and

gradually evolving to large-scale sparse [110] and semi-dense [58, 56, 65] approaches.

Real-time dense solutions have become recently feasible with the widescale prolif-

eration of GPUs. The Dense Tracking and Mapping (DTAM) algorithm of Newcombe

et al. [153] is one of the first such algorithms, which estimates dense keyframe meshes

by minimizing the photometric error defined over a 3D cost volume using a varia-

tional approach. The method of Graber et al. [78] also uses variational optimization
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Figure 3-3: Second Order Smoothing – FLaME estimates dense inverse depth meshes
by optimizing a non-local, second-order variational smoothness cost over a semi-
sparsely sampled Delaunay Graph. Minimizing this cost function promotes piece-
wise planar structure as shown above on benchmark data collected from a handheld
Kinect [207]. From left to right, each column shows the input RGB image, the Kinect
depthmap, the generated FLaME depthmap, the FLaME mesh in the current view,
and the FLaME mesh projected into 3D. Note the smooth planar reconstructions that
are enabled by the approach and the accuracy of the depthmaps relative to those from
the Kinect.

to extract surfaces, but represents the surface as the zero level-set of a signed-distance

function (SDF). The MonoFusion algorithm of Pradeep et al. [172] also uses an SDF

surface representation and fuses depth information defined over the SDF using the

method of Curless and Levoy [37] before raycasting to extract the mesh.

While representing significant progress, these aforementioned methods are cur-

rently constrained to small scenes and require desktop-class GPUs with gentle, hand-

held camera motion that reduces their utility for fast flight through unknown environ-

ments. While the multi-level method of Greene et al. [80] is able to reconstruct larger

scenes without the aid of GPU acceleration, it does not fuse its dense depthmaps

into a coherent surface and suffers from keyframe alignment errors. The MobileFu-

sion algorithm of Ondruska et al. [159] extends MonoFusion to run at 25 Hz on a

commodity smartphone, but further sacrifices the volume under reconstruction.

3.2 Variational Smoothing

In this section, we will give a brief overview of variational smoothing methods, which

are powerful strategies for removing noise and outliers from signals of interest. Their
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name derives from their usage of mathematical techniques from the calculus of varia-

tions. FLaME will leverage concepts from variational smoothing to efficiently denoise

depth estimates defined over a mesh.

In the continuous setting, variational methods pose the regularization problem as

one of energy minimization. Suppose we observe a noisy scalar function 𝑧 : 𝒳 → R

over some domain 𝒳 ⊂ R𝑛. We will compute a denoised version of this function by

minimizing an energy functional 𝐸 of the following form:

𝐸(𝑓) = 𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝑓) + 𝜆𝐸𝑑𝑎𝑡𝑎(𝑓), (3.1)

where 𝑓 : 𝒳 → R denotes our decision variable, 𝐸𝑠𝑚𝑜𝑜𝑡ℎ enforces some form of smooth-

ness or regularity over the space of solutions, and 𝐸𝑑𝑎𝑡𝑎 is a measure of how well 𝑓

fits the measurements 𝑧. The scalar 𝜆 > 0 controls the balance of data-fitting ver-

sus smoothness. Our final solution will be the minimizer 𝑓 * = arg min𝑓 𝐸(𝑓) of this

objective.

Common choices for the data-fitting term 𝐸𝑑𝑎𝑡𝑎(𝑓) include the standard squared-

𝐿2 norm with the observed signal 𝑧:

𝐸𝑑𝑎𝑡𝑎(𝑓) =
∫︁

𝒳
|𝑓(x)− 𝑧(x)|2𝑑x, (3.2)

or an outlier-robust 𝐿1 norm:

𝐸𝑑𝑎𝑡𝑎(𝑓) =
∫︁

𝒳
|𝑓(x)− 𝑧(x)|𝑑x. (3.3)

The choice of the smoothness term 𝐸𝑠𝑚𝑜𝑜𝑡ℎ is generally more involved. In many

important applications, we wish to remove noise from 𝑧, but do not wish to unneces-

sarily smooth away edges or sharp discontinuities that may be part of the true signal.

One possible option that attempts to capture this preference is total variation (TV),

defined as the 𝐿2 norm of the gradient of the function 𝑓 :

𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝑓) =
∫︁

𝒳
||∇𝑓(x)||2 𝑑x. (3.4)
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This form of TV assumes that 𝑓 is differentiable, but generalizations exist for functions

that belong to the broader class 𝐿1(𝒳 ), the space of functions whose absolute value

is Lebesgue integrable [30].

By penalizing the 𝐿2 norm of the gradient (as opposed to the square of the 𝐿2

norm, for example), the TV regularizer biases functions to be piecewise constant,

and therefore solutions that have sharp discontinuities are not penalized as much as

smoothly varying functions. When combined with a squared-𝐿2 norm in 𝐸𝑑𝑎𝑡𝑎(𝐷),

this approach is referred to as the TV-𝐿2 or Rudin-Osher-Fatemi (ROF) model [183].

One can replace the squared-𝐿2 data term with an 𝐿1 data term to add robustness

to outliers, which yields the TV-𝐿1 model, or replace the 𝐿2 norm in 𝐸𝑠𝑚𝑜𝑜𝑡ℎ with a

Huber norm to yield the Huber-ROF model. (See Section 2.5.2 for more information.)

While TV enforces attractive structure on the space of acceptable solutions by

allowing for sharp discontinuities, the true underlying signal we are searching for

may not actually be piecewise constant. Natural images, for example, are not piece-

wise constant, but have small variations between sharp discontinuities. A different,

more powerful choice of regularization is the second-order Total Generalized Variation

(TGV2) semi-norm of [22]:

TGV2(𝑓) = min
w(x)∈R2

𝛼
∫︁

𝒳
|∇𝑓(x)−w(x)| 𝑑x + 𝛽

∫︁
𝒳
|∇w(x)| 𝑑x, (3.5)

which introduces auxiliary function w : 𝒳 → R2 and weights 𝛼, 𝛽 ≥ 0. This func-

tional penalizes discontinuities in the first two derivatives of 𝑓 and therefore promotes

piecewise affine (or planar) solutions. The contributions of the first and second deriva-

tives to the overall cost are controlled by 𝛼 and 𝛽.

It is important to note that this functional only incorporates local information

through the gradient operator. In the context of images, it is reasonable that some

distant locations in the image may actually be correlated (e.g., points inside object

boundaries). A non-local extension NLTGV2 was therefore developed in Ranftl et

al. [174] so that information beyond immediately neighboring pixels could influence
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Algorithm 1 Method of Chambolle and Pock [31]
// Choose 𝜎, 𝜏 > 0, 𝜃 ∈ [0, 1].
while not converged do

q𝑘+1 = prox𝐹 *(q𝑘 + 𝜎Dx̄𝑘)
x𝑘+1 = prox𝐺(x𝑘 − 𝜏D*q𝑘+1)
x̄𝑘+1 = x𝑘+1 + 𝜃(x𝑘+1 − x𝑘)

the objective:

NLTGV2(𝑓) =

min
w(x)∈R2

∫︁
𝒳

∫︁
𝒳

𝛼(x, y) |𝑓(x)− 𝑓(y)− ⟨w(x), x− y⟩| 𝑑x𝑑y+∫︁
𝒳

∫︁
𝒳

𝛽(x, y) |𝑤1(x)− 𝑤1(y)| 𝑑x𝑑y+∫︁
𝒳

∫︁
𝒳

𝛽(x, y) |𝑤2(x)− 𝑤2(y)| 𝑑x𝑑y,

(3.6)

for w(x) = (𝑤1(x), 𝑤2(x)) and weight functions 𝛼(x, y) ≥ 0 and 𝛽(x, y) ≥ 0, which

encode the weighted, non-local gradients.

The work of Pinies et al. [166] showed that when 𝑓 is interpreted as an inverse

depthmap 𝜉 : Ω → R+, smoothing with NLTGV2 leads not only to piecewise affine

solutions over the image domain 𝒳 = Ω, but also over R3 when 𝜉 is projected into

3D (a non-trivial result). This means that by smoothing an inverse depthmap with

NLTGV2, we can obtain fully piecewise planar geometry.

Although the choices of 𝐸𝑑𝑎𝑡𝑎 and 𝐸𝑠𝑚𝑜𝑜𝑡ℎ outlined above are generally not dif-

ferentiable, they are convex and can thus be efficiently minimized using convex op-

timization techniques. If we discretize 𝐸𝑠𝑚𝑜𝑜𝑡ℎ and 𝐸𝑑𝑎𝑡𝑎, one popular optimization

scheme is the first-order, primal-dual method of Chambolle and Pock [31], which

solves optimization problems of the following form:

min
x∈R𝑛

𝐹 (Dx) + 𝐺(x), (3.7)

where 𝐹 : R𝑚 → R+ and 𝐺 : R𝑛 → R+ are convex and D : R𝑛 → R𝑚 is a linear

operator that usually encodes discrete gradients. Here the 𝐹 (Dx) term corresponds

to 𝐸𝑠𝑚𝑜𝑜𝑡ℎ and the 𝐺(x) term corresponds to 𝐸𝑑𝑎𝑡𝑎.
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The essence of the Chambolle and Pock approach is to represent 𝐹 in terms of

its convex conjugate and dual variable q ∈ R𝑚, resulting in the following saddlepoint

problem:

min
x∈R𝑛

max
q∈R𝑚
⟨Dx, q⟩ − 𝐹 *(q) + 𝐺(x). (3.8)

Optimal values for primal variable x and dual variable q are then obtained by re-

peated application of the proximal operator that generalizes gradient descent to non-

differentiable functions [161] (see Algorithm 1).

The method described in the rest of this chapter will apply NLTGV2 regulariza-

tion, optimized using the method of Chambolle and Pock, to fast mesh estimation.

Generally, NLTGV2 regularization and the method of Chambolle and Pock require

GPU acceleration. Our method will reformulate the optimization onto a graph in-

duced by a triangular mesh, allowable for significant computational savings.

3.3 Method

FLaME directly estimates an inverse depth mesh of the environment that efficiently

encodes the scene geometry and allows for efficient, incremental, and keyframeless

second-order variational regularization to recover smooth surfaces. In the following

sections, we will represent images as scalar functions defined over the pixel domain

Ω ⊂ R2, such that 𝐼𝑘 : Ω → R denotes the image taken at time index 𝑘. We will

represent the pose of the camera at time 𝑘 with respect to the world frame 𝑊 by the

transform T𝑊
𝑘 ∈ SE(3).

Given an image sequence 𝐼𝑘 from a moving camera with known pose T𝑊
𝑘 then,

our task entails:

∙ Estimating the inverse depth for a set of sampled pixels (Section 3.3.1)

∙ Constructing the mesh using the sampled points (Section 3.3.2)

∙ Defining a suitable smoothness cost over the graph induced by the mesh (Sec-

tion 3.3.3)
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Figure 3-4: FLaME Overview – FLaME operates on image streams with known poses.
Inverse depth is estimated for a set of features using the fast, filtering-based approach
of [58]. When the inverse depth estimate for a given feature converges, it is inserted as
a new vertex in a graph defined in the current frame and computed through Delaunay
triangulations. This Delaunay graph is then used to efficiently smooth away noise
in the inverse depth values and promote piecewise planar structure by minimizing a
second-order variational cost defined over the graph.
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Figure 3-5: Spatial Regularization – FLaME minimizes a non-local, variational
smoothness cost defined over a Delaunay graph, which efficiently generates piece-
wise planar mesh reconstructions from noisy inverse depth estimates. The above
images show the meshes produced from raw, unsmoothed inverse depth values (left)
and those smoothed with FLaME (right).

∙ Minimizing the smoothness cost (Section 3.3.4)

∙ Projecting the mesh from frame to frame (Section 3.3.5)

See Figure 3-4 for a block diagram of the data flow.

3.3.1 Feature Inverse Depth Estimation

We first estimate the inverse depth for a set “trackable” pixels (or features) sampled

over the image domain that will serve as candidate vertices to insert into our mesh.

Let ℱ𝑘 denote the current set of features in 𝐼𝑘 . Each feature 𝑓 ∈ ℱ𝑘 is detected at

timestep 𝑓𝑡 and defined at location 𝑓u ∈ Ω in the image 𝐼𝑓𝑡 at pose T𝑊
𝑓𝑡

.

We select features by dividing Ω into grid cells of size 2𝐿× 2𝐿 based on a user-set

detail level 𝐿 (see Figure 3-6) and selecting a pixel in each cell as a new feature if

certain criteria are met. First, we do not select features in cells that contain the

projection of another feature (this ensures we maintain a certain desired detail level).

If no other feature in ℱ𝑘 falls into a given grid cell, then for each pixel u in the grid

cell we compute a trackability score 𝑠(u) =
⃒⃒⃒
∇𝐼𝑘(u)𝑇 eu

⃒⃒⃒
based on the image gradient

∇𝐼𝑘(u) and epipolar direction eu induced by the previous frame. This score is a

simple metric for determining pixels that will be easy to match in future frames given

the camera motion. If the pixel in the window with the maximum score passes a

threshold, we add it as a feature to ℱ𝑘.
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Figure 3-6: Detail vs. Speed – The density of tracked features can be tuned to favor ge-
ometric detail or speed. Here we compare the depthmaps (bottom row, columns 2 and
3) generated from the smoothed graph (top row, columns 2-3) to a Kinect depthmap
(bottom left) using different settings of detail parameter 𝐿 (see Section 3.3.1). The
input RGB image is shown in the top left and the depthmaps are colored by depth.
Changing 𝐿 from 4 (column 2) to 5 (column 3) results in nearly a 50% speedup (see
Table 3.1).

Next, we estimate an inverse depth mean 𝜉𝑓 and variance 𝜎2
𝑓 for each 𝑓 ∈ ℱ𝑘 by

matching a reference patch of pixels around u𝑓 in future frames using a direct search

along the epipolar line. For a given match, we compute an inverse depth measurement

with mean 𝜉𝑧 and variance 𝜎2
𝑧 according to the noise model of Engel et al. [58] and

fuse it with the feature’s current estimate using standard Bayesian fusion:

𝜉𝑓 ←
𝜉𝑓𝜎2

𝑧 + 𝜉𝑧𝜎2
𝑓

𝜎2
𝑓 + 𝜎2

𝑧

, 𝜎2
𝑓 ←

𝜎2
𝑓𝜎2

𝑧

𝜎2
𝑓 + 𝜎2

𝑥

. (3.9)

3.3.2 Mesh Construction

We construct our mesh using the set of features ℱ*
𝑘 ⊆ ℱ𝑘 whose inverse depth variance

is lower than a threshold 𝜎2
𝑚𝑎𝑥: ℱ*

𝑘 = {𝑓 ∈ ℱ𝑘 : 𝜎2
𝑓 < 𝜎2

𝑚𝑎𝑥}. We project these features

into the current camera frame T𝑤
𝑘 and then compute a 2D Delaunay triangulation

of the projected pixel locations using the fast method of Shewchuk [196, 197]. We

denote the Delaunay triangulation by 𝒟𝒯 (ℱ*
𝑘 ) = (𝒱𝑘, 𝒯𝑘), where 𝒱𝑘 is the set of mesh
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vertices and 𝒯𝑘 is the set of triangles. The Delaunay triangulation is optimal in the

sense that it maximizes the minimum angle for each triangle in 𝒯𝑘

We denote the feature corresponding to vertex 𝑣 ∈ 𝒱𝑘 with 𝑣𝑓 ∈ ℱ*
𝑘 and let

𝑣u ∈ Ω denote the pixel location of 𝑣, which we initialize with the projection of 𝑓 into

the current frame 𝑘. Letting K ∈ R3×3 represent the intrinsic camera matrix, the

functions 𝜋(𝑥, 𝑦, 𝑧) = (𝑥/𝑧, 𝑦/𝑧) and 𝜋−1(u, 𝑑) = K−1(𝑑 · ū) denote the perspective

projection function and its inverse for pixel u ∈ Ω given depth 𝑑, where ū =
[︂
u𝑇 1

]︂𝑇

denotes a pixel using homogeneous coordinates. The projection of 𝑓 into the current

frame 𝑘 is then given by:

𝑣u = 𝜋
(︁
KT𝑘

𝑓𝑡
𝜋−1

(︁
𝑓u, 𝜉−1

𝑓

)︁)︁
. (3.10)

(Note that de-homogenization is implied for notational simplicity.)

Finally, we assign an inverse depth to each new vertex that we refer to as 𝑣𝑧 and

initialize it to the feature inverse depth 𝜉𝑓 for corresponding feature 𝑓 projected into

the current frame. Note that although we perform our triangulation in 2D using the

vertex pixel locations, we can project the mesh to 3D using this inverse depth value.

We can also obtain a dense inverse depthmap 𝜉 : Ω → R+ by linearly interpolating

the inverse depth values of the mesh vertices.

3.3.3 Non-Local Second Order Variational Cost

Now equipped with an inverse depth mesh 𝒟𝒯 (ℱ*
𝑘 ), we formulate our non-local,

graph-based variational regularizer that will efficiently smooth away noise in the mesh

and promote planar structure.

We start with the continuous NLTGV2-𝐿1 variational cost for a fully dense in-

verse depthmap 𝜉 : Ω → R+, which sets the smoothing term 𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝜉) to NLTGV2

defined in Equation (3.6) and the data fidelity term 𝐸𝑑𝑎𝑡𝑎(𝜉) to the robust 𝐿1 norm

in Equation (3.3):

𝐸(𝜉) = NLTGV2(𝜉) + 𝜆
∫︁

Ω
|𝜉(u)− 𝑧(u)| 𝑑u. (3.11)
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Here 𝑧 : Ω→ R+ is our raw, unsmoothed inverse depthmap.

We will approximate this functional over the fully dense 𝜉 using our inverse depth

mesh 𝒟𝒯 (ℱ*
𝑘 ). We first reinterpret 𝒟𝒯 (ℱ*

𝑘 ) as a directed Delaunay graph 𝒟𝒢(ℱ*
𝑘 ) =

(𝒱𝑘, ℰ𝑘), with identical vertices 𝒱𝑘 and directed, non-parallel edges ℰ𝑘 generated from

the triangle set 𝒯𝑘 (the direction of each edge is arbitrary). For each vertex 𝑣 ∈ 𝒱𝑘,

we assign a smoothed inverse depth value that we denote 𝑣𝜉 and an auxiliary variable

w ∈ R2 such that 𝑣w = (𝑣𝑤1 , 𝑣𝑤2). We let 𝑣x denote (𝑣𝜉, 𝑣w).

The graph version of our 𝐿1 data fidelity term is straightforward to define in terms

of 𝒟𝒢(ℱ*
𝑘 ) by replacing the integral over the image domain Ω with a sum over the

vertices of 𝒟𝒢(ℱ*
𝑘 ):

∫︁
Ω
|𝜉(u)− 𝑧(u)| 𝑑u ≈

∑︁
𝑣∈𝒱𝑘

|𝑣𝜉 − 𝑣𝑧| , (3.12)

where 𝑣𝑧 is the inverse depth of feature 𝑣𝑓 projected into the current frame.

Discretizing the NLTGV2 smoothing term over 𝒟𝒢(ℱ*
𝑘 ) simply requires a special

setting of the weight functions 𝛼, 𝛽 : Ω × Ω → R. In the non-local, variational

framework, these functions control the influence of inverse depth values over their

spatial neighbors and thus should be defined in terms of the edge set ℰ𝑘 of 𝒟𝒢(ℱ*
𝑘 ).

For each edge 𝑒 ∈ ℰ𝑘, we denote the associated vertices as 𝑣𝑖, 𝑣𝑗 ∈ 𝒱𝑘 (note again

that the edges are directed from 𝑖 to 𝑗). We then assign weights 𝑒𝛼, 𝑒𝛽 ≥ 0 to each

edge and set the functions 𝛼 and 𝛽 to the following:

𝛼(u, v) = 𝑒𝛼𝛿(u− 𝑣𝑖
u, v− 𝑣𝑗

u) for 𝑒 ∈ ℰ (3.13)

𝛽(u, v) = 𝑒𝛽𝛿(u− 𝑣𝑖
u, v− 𝑣𝑗

u) for 𝑒 ∈ ℰ . (3.14)

Setting 𝛼, 𝛽 in terms of delta functions that encode the connectivity in the graph

(i.e., the edges ℰ𝑘) reduces the double integral over Ω in Equation 3.6 to a summation
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over ℰ𝑘:

NLTGV2(𝜉) ≈
∑︁
𝑒∈ℰ𝑘

𝑒𝛼

⃒⃒⃒
𝑣𝑖

𝜉 − 𝑣𝑗
𝜉 − ⟨𝑣𝑖

w, 𝑣𝑖
u − 𝑣𝑗

u⟩
⃒⃒⃒

+

∑︁
𝑒∈ℰ𝑘

𝑒𝛽

⃒⃒⃒
𝑣𝑖

𝑤1 − 𝑣𝑗
𝑤1

⃒⃒⃒
+

∑︁
𝑒∈ℰ𝑘

𝑒𝛽

⃒⃒⃒
𝑣𝑖

𝑤2 − 𝑣𝑗
𝑤2

⃒⃒⃒
=

∑︁
𝑒∈ℰ𝑘

⃒⃒⃒⃒⃒⃒
D𝑒(𝑣𝑖

x, 𝑣𝑗
x)

⃒⃒⃒⃒⃒⃒
1

.

(3.15)

Here D𝑒 is a linear operator that acts on the vertices corresponding to edge 𝑒:

D𝑒(𝑣𝑖
x, 𝑣𝑗

x) =

⎡⎢⎢⎢⎢⎢⎣
𝑒𝛼

(︁
𝑣𝑖

𝜉 − 𝑣𝑗
𝜉 − ⟨𝑣𝑖

w, 𝑣𝑖
u − 𝑣𝑗

u⟩
)︁

𝑒𝛽

(︁
𝑣𝑖

𝑤1 − 𝑣𝑗
𝑤1

)︁
𝑒𝛽

(︁
𝑣𝑖

𝑤2 − 𝑣𝑗
𝑤2

)︁

⎤⎥⎥⎥⎥⎥⎦ . (3.16)

The final form of our graph-based NLTGV2 − 𝐿1 cost functional is now

𝐸(𝒟𝒢(ℱ*
𝑘 )) =

∑︁
𝑒∈ℰ𝑘

⃒⃒⃒⃒⃒⃒
D𝑒(𝑣𝑖

x, 𝑣𝑗
x)

⃒⃒⃒⃒⃒⃒
1

+ 𝜆
∑︁

𝑣∈𝒱𝑘

|𝑣𝜉 − 𝑣𝑧| . (3.17)

Note that by defining the NLTGV2-𝐿1 variational cost in terms of the 𝒟𝒢(ℱ*
𝑘 ), we can

trivially augment and refine the objective by simply adding new vertices and edges

to the graph, just as the mesh 𝒟𝒯 (ℱ*
𝑘 ) is augmented and refined using incremental

triangulations.

3.3.4 Graph Optimization

Having reformulated the NLTGV2-𝐿1 cost in terms of graph 𝒟𝒢(ℱ*
𝑘 ), we now apply

the optimization method of Chambolle and Pock [31]. We see the summation over

ℰ𝑘 and the summation over 𝒱𝑘 in Equation 3.17 correspond to 𝐹 (D(x)) and 𝐺(x),

respectively, in the Chambolle and Pock objective in Equation 3.7 for x = [𝑣x] for

𝑣 ∈ 𝒱𝑘, and that we can follow the same optimization approach.

We first generate the saddlepoint problem induced by this new graph-based cost

by re-expressing the 𝐿1 norm corresponding to the sum over edges in terms of its

convex conjugate, which can in turn be composed of the conjugates of each term in
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the sum:

⃒⃒⃒⃒⃒⃒
D𝑒(𝑣𝑖

x, 𝑣𝑗
x)

⃒⃒⃒⃒⃒⃒
1

= max
𝑒q
⟨D𝑒(𝑣𝑖

x, 𝑣𝑗
x), 𝑒q⟩ − 𝛿𝑄(𝑒q). (3.18)

Here we have assigned a dual variable q ∈ R3 to each edge, denoted by 𝑒q. The

indicator term 𝛿𝑄 is the conjugate 𝐿*
1 and is defined as

𝛿𝑄(𝑒q) =
3∑︁

𝑖=1
𝛿𝑞𝑖

(𝑒𝑞𝑖
) (3.19)

𝛿𝑞(𝑞) =

⎧⎪⎪⎨⎪⎪⎩
0 if |𝑞| ≤ 1

∞, otherwise
. (3.20)

The NLTGV2-𝐿1 saddlepoint problem can now be written in terms of 𝒟𝒢(ℱ*
𝑘 ) as:

min
𝑣x

max
𝑒q

∑︁
𝑒∈ℰ𝑘

⟨D𝑒(𝑣𝑖
x, 𝑣𝑗

x), 𝑒q⟩ − 𝛿𝑄(𝑒q) + 𝜆
∑︁

𝑣∈𝒱𝑘

|𝑣𝜉 − 𝑣𝑧| . (3.21)

To optimize Equation 3.21, we first perform semi-implicit, subgradient ascent over

𝑒q for each 𝑒 ∈ ℰ𝑘:

𝑒𝑛+1
q = 𝑒𝑛

q + 𝜎D𝑒(𝑣𝑖
x, 𝑣𝑗

x)− 𝜎𝜕𝛿𝑄(𝑒𝑛+1
q ) (3.22)

where 𝜎 > 0 is the dual step size and 𝜕𝛿𝑄(q) is the subgradient of 𝛿𝑄(q). The ascent

step is semi-implicit in that the post-step variable 𝑒𝑛+1
q appears on both sides of

Equation 3.22 and is a subgradient step due to the presence of non-differentiable 𝛿𝑄.

Moving the 𝑒𝑛+1
q terms to the left side of the equation yields:

𝑒𝑛+1
q + 𝜎𝜕𝛿𝑄(𝑒𝑛+1

q ) = 𝑒𝑛
q + 𝜎D𝑒(𝑣𝑖

x, 𝑣𝑗
x), (3.23)

which we can express in terms of the proximal operator:

𝑒𝑛+1
q = prox𝐹 *

(︁
𝑒𝑛

q + 𝜎D𝑒(𝑣𝑖
x, 𝑣𝑗

x)
)︁

. (3.24)
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Algorithm 2 NLTGV2 − 𝐿1 Graph Optimization
// Choose 𝜎, 𝜏 > 0, 𝜃 ∈ [0, 1].
while not converged do

for each 𝑒 ∈ ℰ𝑘 do
𝑒𝑛+1

q = prox𝐹 *

(︁
𝑒𝑛

q + 𝜎D𝑒(𝑣𝑖
x̄, 𝑣𝑗

x̄)
)︁

for each 𝑣 ∈ 𝒱𝑘 do
𝑣𝑛+1

x = prox𝐺

(︁
𝑣𝑛

x − 𝜏
∑︀

𝑒∈𝒩𝑖𝑛(𝑣) D*
𝑖𝑛(𝑒𝑛+1

q )− 𝜏
∑︀

𝑒∈𝒩𝑜𝑢𝑡(𝑣) D*
𝑜𝑢𝑡(𝑒𝑛+1

q )
)︁

𝑣𝑛+1
x̄ = 𝑣𝑛+1

x + 𝜃 (𝑣𝑛+1
x − 𝑣𝑛

x)

The proximal operator can be interpreted as the equivalent of a gradient step for a

non-differentiable function [161].

We next wish to perform semi-implicit subgradient descent over 𝑣x for each 𝑣 ∈ 𝒱𝑘,

but some care must be taken with forming the adjoint operator D*
𝑒. We observe

that the operator D𝑒(𝑣𝑖
x, 𝑣𝑗

x) maps two primal vertex variables (corresponding to the

source and destination vertex) to the dual space for each edge. The adjoint must

therefore map a single dual edge variable to the space of of two primal variables (again

corresponding to the source and destination vertex). Starting from the expression of

D𝑒 in Equation 3.16, we form the adjoint as

D*
𝑒(𝑒q) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑒𝛼𝑒𝑞1

−𝑒𝛼(𝑒𝑖
𝑢 − 𝑒𝑗

𝑢)𝑒𝑞1 + 𝑒𝛽𝑒𝑞2

−𝑒𝛼(𝑒𝑖
𝑣 − 𝑒𝑗

𝑣)𝑒𝑞1 + 𝑒𝛽𝑒𝑞3

−𝑒𝛼𝑒𝑞1

−𝑒𝛽𝑒𝑞2

−𝑒𝛽𝑒𝑞3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.25)

We can then partition the top three rows of D*
𝑒 into D*

𝑖𝑛, which maps 𝑒q to the source

primal vertex space, and the bottom three rows of D*
𝑒 into D*

𝑜𝑢𝑡, which maps 𝑒q to

the destination primal vertex space:

D*
𝑒(𝑒q) =

⎡⎢⎣ D*
𝑖𝑛(𝑒q)

D*
𝑜𝑢𝑡(𝑒q)

⎤⎥⎦ . (3.26)
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The semi-implicit subgradient descent equations for each 𝑣x is then given by

𝑣𝑛+1
x = 𝑣𝑛

x − 𝜏𝜕𝐺(𝑣𝑛+1
x )− 𝜏

∑︁
𝑒∈𝒩𝑖𝑛(𝑣)

D*
𝑖𝑛(𝑒𝑛+1

q )− 𝜏
∑︁

𝑒∈𝒩𝑜𝑢𝑡(𝑣)
D*

𝑜𝑢𝑡(𝑒𝑛+1
q ), (3.27)

where 𝜏 > 0 is the primal step size and the incoming and outgoing edges of 𝑣 are

denoted as 𝒩𝑖𝑛(𝑣) and 𝒩𝑜𝑢𝑡(𝑣), respectively. Solving for 𝑣𝑛+1
x in terms of the proximal

operator of 𝐺 then yields

𝑣𝑛+1
x = prox𝐺

⎛⎝𝑣𝑛
x − 𝜏

∑︁
𝑒∈𝒩𝑖𝑛(𝑣)

D*
𝑖𝑛(𝑒𝑛+1

q )− 𝜏
∑︁

𝑒∈𝒩𝑜𝑢𝑡(𝑣)
D*

𝑜𝑢𝑡(𝑒𝑛+1
q )

⎞⎠ . (3.28)

The final step of the Chambolle and Pock method is a simple extragradient step

applied to each vertex. The full optimization is summarized in Algorithm 2. By

expressing the optimization in terms of the graph 𝒟𝒢(ℱ*
𝑘 ), we can trivially add and

remove vertices and edges to the objective as new features are added to ℱ*
𝑘 and trian-

gulated. In addition, by matching the density of vertices to the geometric complexity

of the observed environment, each optimization iteration is both fast to perform and

quick to converge (see Figure 3-5 for a comparison between smoothed and unsmoothed

meshes). The graph interpretation also provides additional intuition into the opti-

mization, which alternates between operations on the vertices and edges of the graph:

smoothing updates are passed from vertices to neighboring edges, and then from the

edges back to the corresponding vertices.

3.3.5 Frame-to-Frame Propagation

We propagate the Delaunay graph 𝒟𝒢(ℱ*
𝑘 ) so that the optimized surface is always

available in the current frame. At each timestep, we set the vertex location 𝑣u for

𝑣 ∈ 𝒱𝑘 to the projection based on the smoothed inverse depth value 𝑣𝜉, which we then

update to be expressed in the current frame as well. We also set the unsmoothed 𝑣𝑧

inverse depth value to the projection of the underlying feature inverse depth 𝜉𝑓 .

With new vertex locations and potentially new features, we retriangulate to main-

tain the Delaunay optimality property and add and remove edges to reflect the new
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connectivity in the triangulation. We also remove vertices and features that project

outside the view of the current camera, although these could be saved and displayed

separately. Since the relative transform from frame-to-frame is small for high fram-

erate cameras, and because the optimization is typically able to converge before the

next frame is available, the optimization is relatively unaffected by the projection step

and we benefit from the smoothed surface always available at the current camera.

3.4 Evaluation

Our implementation of FLaME is written in C++ and makes use of the Boost Graph

Library [199] and the Delaunay triangulation implementation from Shewchuk [196,

197]. The primary processing thread handles stereo matching and inverse depth fil-

tering, performs Delaunay triangulations, updates the Delaunay graph, and publishes

output. A second thread continuously performs the graph optimization steps outlined

in Algorithm 2. The third thread samples new features every 𝑁 frames (𝑁 = 6 in

our experiments). For all experiments we set the edge weight 𝑒𝛼 = 1/||𝑣𝑖
u − 𝑣𝑗

u||2
(the reciprocal of the edge length in pixels) and 𝑒𝛽 = 1. We set the parameter 𝜆 that

controls the balance between unsmoothed data and the regularizer between [0.1, 0.35].

3.4.1 Benchmark Datasets

We quantitatively compare the FLaME reconstructions to existing approaches and

show how we are able to produce accurate, dense geometry extremely efficiently at the

current frame. We interpolate the FLaME meshes to fully dense inverse depthmaps

and measure their accuracy and completeness against two existing CPU-based ap-

proaches: LSD-SLAM [56] and Multi-Level Mapping (MLM) [80]. We use image

and pose sequences from the TUM RGB-D SLAM Benchmark dataset (VGA at 30

Hz) [207] and the EuRoC MAV datasets (WVGA at 20 Hz) [24]. Pose ground truth

for both datasets was generated using a motion capture system. Structure ground

truth was approximated using an RGB-D sensor for the TUM sequences and a 3D

laser scanner for the EuRoC sequences.
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Performance on Benchmark Datasets
DM RE [%] AD [%] Cores Time [ms] FPS [Hz]

T
U

M
LSD 181 18 19 2.5 16 62
MLM 103 12 32 2.1 17 57
L=3 4950 8.5 54 2.0 16 61
L=4 4950 6.8 54 1.7 7.3 136
L=5 4950 6.6 51 1.4 4.2 236

Eu
R

oC

LSD 874 18 17 1.6 16 61
MLM 734 17 25 1.0 14 69
L=3 12595 12 36 1.3 13 78
L=4 12595 11 37 1.2 7.0 143
L=5 12595 10 33 0.8 4.3 230

Table 3.1: We evaluate FLaME with various settings of detail parameter 𝐿 (see
Section 3.3.1) on two benchmark datasets [207, 24]. FLaME produces depthmaps
(DM) with both lower relative inverse depth error (RE) and a higher density of
accurate inverse depths (AD), while taking less processing time per frame (Time)
and using less CPU load (Cores), than state-of-the-art approaches LSD-SLAM [56]
and MLM [80]. Refer to Section 3.4.1 for a more detailed description of the metrics
and experimental setup.

The pose tracking and SLAM backend modules of LSD-SLAM and MLM were

disabled in the experiments so that all three algorithms used the motion capture poses

and all performance differences can be attributed to the different depth estimation

techniques.

All metrics were captured on a desktop computer with an Intel Core i7 4820K 3.7

GHz CPU. We use three sequences from the TUM dataset (long_office_household,

structure_texture_far, and nostructure_texture_near_withloop) and the 6 sequences

from the EuRoC dataset with structure ground truth (V1_01, . . . , V2_03).

We report two main measures for depthmap accuracy and completeness: the rel-

ative inverse depth error and the density of accurate depth estimates. The relative

inverse depth error is the error in inverse depth relative to ground truth, averaged

over all pixels and depthmaps. The density of accurate depth estimates is the fraction

of inverse depth estimates that are within 10% of ground truth for each depthmap,

averaged over all depthmaps. We also report both runtime per frame and CPU load
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Accurate Inverse Depth Density [%]
Sequence LSD MLM L=3 L=4 L=5

T
U

M fr3_loh 18.9 30.4 48.1 47.9 44.1
fr3_nstn 16.5 30.6 52.5 53.7 51.9
fr3_stf 26.8 47.8 72.6 72.0 69.1

Eu
R

oC
V1_01 18.2 26.4 36.6 37.8 34.4
V1_02 18.3 27.9 39.2 40.5 37.8
V1_03 11.0 17.0 26.4 27.0 24.7
V2_01 25.9 39.3 48.1 46.9 41.6
V2_02 20.5 28.9 37.2 37.2 32.2
V2_03 11.5 19.0 27.8 28.9 26.7

Table 3.2: Here we present the fraction of inverse depths per depthmap that are within
10% of groundtruth for each benchmark video sequence [207, 24] for LSD-SLAM [56],
MLM [80], and FLaME with different settings of parameter 𝐿. FLaME outperforms
the competing approaches, with 𝐿 = 4 providing a nice balance between the number
of vertices per depthmap and the amount of smoothing performed.

over the datasets.

The results are summarized in Table 3.1 and Table 3.2 and as can be seen, FLaME

produces dense geometry more accurately and efficiently than the competing ap-

proaches. On the EuRoC sequences FLaME with 𝐿 = 5 produces reconstructions at

up to 230 Hz using less than one Intel i7 4820K CPU core and achieves the lowest

relative inverse depth error across the different systems. Although finer settings of

𝐿 = 3 and 𝐿 = 4 produce slightly better density metrics, as expected, they fair

slightly worse in terms of relative inverse depth error compared to 𝐿 = 5. We be-

lieve the primary reason for this unintuitive result is that the graph optimization

takes longer to converge for these parameter settings given the greater number of

vertices and edges. Since the mesh takes longer to converge, the camera moves be-

fore the mesh can settle, resulting in higher inverse depth error. Initial depthmap

convergence is very fast, however, usually within the first second of operation. In

addition, FLaME produces accurate meshes at the current frame, while the compet-

ing approaches (which are both keyframe based) produce reconstructions far more

infrequently, which is particularly dangerous for mobile robot navigation.
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Figure 3-7: Flight Experiments – FLaME can be used to enable online perception
for autonomous navigation. We conducted indoor and outdoor flight experiments
running FLaME onboard a small micro-aerial vehicle (MAV) (bottom left) with a
forward-facing camera flying at up to 3.5 meters-per-second. The image on the top
left shows the collision-free trajectory (pink) that is generated to navigate around a
pillar obstacle. The images to the right show the inverse depth meshes as the vehicle
approaches the obstacle field.

We also experimented with corrupting the ground truth positions with additive

Gaussian noise to characterize the effect of pose error. With no artificial noise, the

density of accurate inverse depths for the TUM fr3_stf sequence is 71%. How-

ever, with translation noise with a standard deviation of 1 cm, this density drops to

30%, which demonstrates the importance of accurate pose information on the depth

estimation process.

3.4.2 Flight Experiments

We also provide results from experiments with FLaME running completely onboard,

in-the-loop on a small autonomous quadrotor flying at up to 3.5 meters-per-second.

The quadrotor (see Figure 3-7) weighed 3 kg and was equipped with a Point Grey

Flea 3 camera running at 320×256 image resolution at 60 Hz, an inertial measurement

unit (IMU), and a laser altimeter. The pose of the camera was provided by an external

visual-inertial odometry pipeline [202]. Collision-free motion plans were generated

using A* on a 2D occupancy grid updated using slices from the FLaME meshes. All

computation was performed onboard an Intel Skull Canyon NUC flight computer,

with no prior information provided to the robot.

We flew the vehicle through an indoor warehouse environment and an outdoor for-
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Timing and Load on Autonomous MAV
Metric Indoor Outdoor
Vehicle Speed [m/s] 2.5 3.5
Depthmaps 803 1046
CPU Load [cores] 1.6 1.7
Runtime [ms] 9.4 11
Peak FPS [Hz] 106 91

Table 3.3: FLaME is efficient enough to allow for real-time perception onboard small,
computationally constrained micro-aerial vehicles (MAVs). We flew our quadrotor
fully autonomously in both indoor and outdoor environments with no prior informa-
tion and used geometry from FLaME to plan around obstacles online.

est with obstacles that the vehicle had to plan around using perception from FLaME.

Runtime and load metrics on the flight computer are summarized in Table 3.3. Even

on the flight computer, FLaME was still able to produce dense reconstructions at

over 90 Hz (the detail parameter was set to 𝐿 = 3 to account for the lower image

resolution), with sufficient accuracy to plan around obstacles.

3.4.3 Improvements

While FLaME performs well on both the benchmark datasets and flight experiments

described above, there are a few ways that performance might be improved. First,

FLaME relies on accurate poses in order to reliably track features and estimate depths.

As noted in the preceding sections, the density of accurate depth estimates drops

drastically with the addition of noise on the poses. Accounting for these inevitable

pose errors in some way would significantly improve the robustness of the full system.

Second, the feature tracking paradigm as described in Section 3.3.1, while optimized

for speed, does fail for a sizable fraction of detected features due to image noise and

adversarial camera motion. Although in practice these failed feature tracks can simply

be removed and new features sampled, more reliably tracking potential mesh vertices

across frames would lead to more stable meshes. Lastly, these potential mesh vertices

are chosen by dividing the image domain into a grid based on a user-defined parameter

𝐿 and sampling easily trackable pixels within each grid cell. This parameter 𝐿 needs
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to be tuned for a particular image resolution and environment, which hampers the

method’s overall ability to generalize to new scenes. More intelligently selecting

features, for example by learning which high-gradient pixels correspond to important

geometric structure, could both obviate the need for tuning by the end user as well

as reduce the number of required depth estimates even further.

3.5 Conclusion

In this chapter, we presented a novel dense monocular depth estimation algorithm ca-

pable of reconstructing geometric meshes on computationally constrained platforms.

FLaME exploits the prior information that many environments of interest can be

well-described using piecewise planar triangular meshes. Since the number of depth

estimates needed for a given mesh is small compared to the number of pixels in an

image, our method is significantly faster than every-pixel methods. In addition, by

reformulating the reconstruction problem as a variational smoothing problem over a

time-varying Delaunay graph, we can apply sophisticated spatial regularization tech-

niques that would be intractable otherwise using only a standard CPU, allowing for

both for efficient, incremental smoothing of noisy depth estimates and low-latency

mesh estimation.
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Chapter 4

Metric Monocular SLAM using

Learned Scale Factors

This chapter proposes an approach for monocular SLAM that generates metrically-

scaled solutions without requiring additional sensors or compute. Monocular SLAM,

where both egomotion and environmental structure are estimated from a single mov-

ing camera, has undergone tremendous advances over the past twenty years. Early

filter-based approaches [41] have quickly evolved to sophisticated, hierarchical, factor

graph-based optimizations, such as the methods of Klein and Murray [110], Mur-Artal

et al. [145], and Engel et al. [55].

As outlined in Chapter 1, however, monocular cameras are fundamentally bearing

sensors that only observe the angle of incident light on the sensor plane, not the

metric range to the structure from which the light was reflected. Objects that are

different sizes may actually appear identical when projected onto the image plane.

For example, a toy RC car and a real car may be indistinguishable when placed the

appropriate distances away from the camera. The geometric content of the images

— meaning the raw pixel intensities absent of any higher-level information regarding

what is being observed — would be identical in each scenario. This means that

conventional monocular SLAM systems, which rely solely on the geometric image

content, can only estimate camera egomotion and environmental structure up to an

arbitrary scale factor. Additional information must be exploited to resolve the metric
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scale of the solution. This lack of metric scale observability not only means that

monocular SLAM solutions can be arbitrarily scaled, but also means that the solutions

can drift in scale over time, especially when new areas of the scene are uncovered.

Each time the camera rotates quickly to observe new parts of the scene, the scale

of the SLAM solution can change significantly since the old and new portions of the

map may only have a small number of landmarks in common. While leveraging priors

over the camera’s altitude or the size of known objects in the scene [69] to uncover

the metric scale is possible, the current most popular technique is to fuse the images

with an inertial measurement unit (IMU), which measures linear accelerations and

angular velocities at metric scale.

Though significant progress has been made on this front [143, 124, 64, 202, 173],

these existing visual-inertial SLAM approaches have a number of drawbacks. Be-

yond the additional hardware that must be calibrated and time-synchronized, these

algorithms are difficult to implement, often require expert parameter tuning, are ex-

tremely sensitive to errors in the accelerometer biases, and require high-acceleration

motion to excite the IMU and make scale observable. (The last point is particularly

troublesome for mobile robot navigation as it can significantly complicate the motion

planning problem.)

We note, however, that real-world scenes exhibit a surprising amount of regularity

and structure that is captured in monocular imagery beyond simply the geometric

content. For instance, the 3D geometry, color, and texture of a scene are all highly

correlated with each other: walls are usually perpendicular to the ground and white,

roads are usually flat and grey, stop signs are usually red, trees are usually green,

and so on. Furthermore, semantically meaningful objects like cars, people, and doors

only appear in a specific range of sizes and orientations. This higher-level (or seman-

tic) information content, which we can interpret as a prior over the distribution of

environments and objects, contains information about the metric scale of the scene

that we can exploit. For example, if a car is observed by a monocular camera, we can

deduce its depth based on how large it appears in the image.

In recent years, methods that apply end-to-end deep learning techniques to the

86



Figure 4-1: Metric Monocular SLAM – Our method is capable of estimating met-
ric camera motion from monocular images without additional sensors or hardware
acceleration by leveraging depth predictions from a small neural network. Top row:
Input image from the KITTI dataset [72]. Second row: Groundtruth depths from
LIDAR scans. Third row: Coarse depthmap predicted with our network. Bottom
row: Resulting metrically scaled trajectory (blue) versus the groundtruth (red).
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Figure 4-2: Monocular Scale Ambiguity – Monocular cameras are bearing sensors
that detect the direction of incident light. As a consequence, they cannot observe the
metric scale of the environment purely from the pixel intensities alone. Objects of
different sizes may appear identical when projected onto the image plane. Consider
the example above of a small toy car and a larger real car. Placing the toy car close
to the camera and the real car far from the camera results in identical images. The
metric scale of the scene is therefore ambiguous using solely image data.

monocular SLAM problem have been developed that take advantage of this additional

structure. Spurred by the rapid adoption of deep, convolutional neural networks

(CNNs) for a variety of computer vision tasks, these techniques extract higher-level

information — such as metric scale — from large datasets of images, encode it in the

weights of a CNN, and then use the CNN to drive localization and mapping [230,

126, 34, 99, 241] (see Section 2.4.5 for more information). While these end-to-end

SLAM systems show promise and can output scaled solutions, however, their tracking

performance still lags behind geometric approaches and they require GPU acceleration

to perform inference.
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Given that the relative geometry (i.e., the geometry up to scale) of the monocular

SLAM problem is directly observable from the image data, we believe a more targeted

application of machine learning (which does not ignore directly observable quantities

in the sensor data) will ultimately lead to more robust systems.

To that end, we propose a monocular SLAM solution that combines metric infor-

mation that can be inferred using a neural network with the state-of-the-art in factor

graph-based geometric SLAM. We first train a small CNN to regress metric depth

from monocular images given calibrated stereo frames as training data. Unlike exist-

ing learned depth estimation approaches [75, 76, 164, 84, 169], our technique leverages

the insight that when used to estimate scale, these learned depth predictions need

only be coarse in image space. This reduction in resolution allows us to shrink our

network to the point that performing inference on a standard CPU becomes computa-

tionally tractable. Simply downsampling the input images and training the network

to minimize photoconsistency between stereo training pairs yields inaccurate depths,

however, as the disparity between the left and right images decreases with image

resolution. We make several improvements to our network architecture and training

procedure to address this lack of depth observability, while keeping the efficiency that

comes with using coarse input images.

First, although coarse images are used as input to the network at test time, we

train on full resolution images and compute additional photoconsistency loss terms in

a fine-to-coarse manner. Incorporating these loss terms at training time means that

photoconsistency errors that are only observable at fine image scales can still be used

to learn the disparity at the coarser image scales that we care about.

Second, we provide an additional supervision signal to the network by estimating

a full-resolution disparity map using conventional block-matching stereo. Although

these directly-computed disparity maps can be sparse and noisy, they nonetheless

provide a loss signal that can allow the network to learn the correct disparity values

at coarse image scales where photoconsistency may be insufficient.

These improvements allow us to estimate spatially coarse, but depth-accurate pre-

dictions in only 30 ms per frame on a standard CPU. At runtime we divide the SLAM
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problem into a local visual odometry (VO) module and a global pose graph module

(see Figure 4-4). The local VO module performs conventional monocular SLAM over

a small sliding window of keyframes, while the global pose graph incorporates metric

depth measurements from the network to both constrain the solution scale and elim-

inate scale drift. After each iteration of solving for the camera poses and landmark

positions, the current scale of the global pose graph can be used to warp the local

VO so that metrically scaled geometry is available for the most recent image.

Our method has notable advantages over existing approaches. Unlike inertial-

based systems, we do not require extra sensors or special motion to generated scaled

outputs. Unlike end-to-end learning-based systems, we do not ignore the observable

epipolar geometry present in the live images and can take advantage of factor graph

optimization. Unlike learned monocular depth estimation methods, we target the

network specifically for scale estimation and can thus shrink the network to allow

for fast inference without hardware acceleration. We show compelling results on the

KITTI benchmark dataset in addition to real-world experiments with a handheld

camera.

4.1 Related Work

Applying machine learning to solve aspects of the monocular SLAM problem has

seen a recent resurgence in the literature due to the increasing expressive power of

deep neural networks. While some methods target the monocular visual odometry

problem specifically [34, 99], single-view depth estimation has seen an explosion of

progress in the last decade. Initial methods used explicit supervision from ground

truth models or LIDAR scans to regress depth from images [186, 127], while more

recent approaches use self-supervision in the form of calibrated stereo imagery in

order to regress depth [75, 169]. These self-supervised networks are increasingly

augmented with separate pose estimation modules so that they can be applied directly

to monocular video instead of calibrated stereo imagery [241, 230, 126, 76].

Our approach is most similar to the hybrid learned/geometric methods of [213,
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163, 236], which combine learned priors with geometric SLAM. CNN-SLAM [213] uses

a CNN to predict a depthmap for each frame in a keyframe SLAM graph, which is

then iteratively refined and fused into a global map. DPC-Net [163] trains a network

to provide corrections to an existing visual odometry pipeline. DVSO [236] predicts

a hypothetical stereo image from a monocular image and then uses the pair of images

to drive a stereo visual odometry system [229]. We also take inspiration from the

methods of Strasdat et al [203] and Engel et al. [56], which leverage pose graph

optimization over the group of similarity transforms in order to reduce scale drift.

4.2 Method

In this section, we will briefly clarify notation before describing the algorithmic build-

ing blocks of our method in detail. As in previous chapters, we will represent the

image taken at time 𝑘 by the function 𝐼𝑘 : Ω → R over the pixel domain Ω ⊂ R2.

K ∈ R3×3 once again will denote the intrinsic camera parameters. We represent the

pose of the camera at time 𝑘 relative to frame 𝑗 by T𝑗
𝑘 ∈ SE(3). An element of the

group of 3D similarity transforms Sim(3) is denoted by S𝑗
𝑘 and can be represented as

a homogeneous transform matrix in R4×4 as follows:

S𝑗
𝑘 =

⎡⎢⎣𝑠R t

0 1

⎤⎥⎦ (4.1)

for rotation matrix R ∈ SO(3) and translation vector t ∈ R3. Once more, the per-

spective projection function is denoted by 𝜋(𝑥, 𝑦, 𝑧) = (𝑥/𝑧, 𝑦/𝑧). Vectors represented

in homogeneous coordinates are denoted by x̄ = (x, 1) ∈ R𝑛+1 for x ∈ R𝑛.

Given rectified stereo images, we let 𝐷𝑙 : Ω→ R represent the disparity map that

warps the right image 𝐼𝑟 to the left image 𝐼𝑙 such that 𝐼𝑙(𝑢) = 𝐼𝑟(𝑢+𝐷𝑙(𝑢)). Similarly

we let 𝐷𝑟 represent the disparity map that warps the left image to the right image. A

disparity map 𝐷 can be converted to inverse depthmap 𝑍 given the horizontal focal

length 𝑓𝑥 of the cameras and the horizontal baseline 𝐵 as 𝑍(𝑢) = 𝐷(𝑢)/(𝐵𝑓𝑥).
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4.2.1 Single-view Depth Regression

Following the self-supervised approach of Godard et al. [75], we estimate the metric

inverse depthmap 𝑍 for a given image by treating it as the left image 𝐼𝑙 of a calibrated

stereo pair and training a CNN to predict the corresponding right image 𝐼𝑟 via the

disparity maps 𝐷𝑙 and 𝐷𝑟. We therefore wish to learn a function 𝑓 with parameters

𝜃 that maps 𝐼𝑙 to 𝐼𝑟 (and vice versa) via 𝐷𝑙 and 𝐷𝑟:

(𝐷𝑙, 𝐷𝑟) = 𝑓(𝐼𝑙; 𝜃)

𝐼𝑙(𝑢) = 𝐼𝑟(𝑢 + 𝐷𝑙(𝑢))

𝐼𝑟(𝑢) = 𝐼𝑙(𝑢 + 𝐷𝑟(𝑢)).

(4.2)

With a dataset of stereo pairs 𝒟 = {𝐼𝑙, 𝐼𝑟}𝑗 and a loss function 𝑙 that measures the

quality of the predictions, we can estimate the parameters 𝜃 by solving the following

optimization problem:

𝜃* = arg min
𝜃

∑︁
𝐼𝑙,𝐼𝑟∈𝒟

𝑙(𝑓(𝐼𝑙; 𝜃), 𝐼𝑙, 𝐼𝑟). (4.3)

Network Architecture

We choose 𝑓 to be a convolutional neural network for the power of these models to

capture complex patterns in image data, while still being practical to train. Specif-

ically, we base our network on the pyramidal model detailed by Poggi et al. [169]

augmented with residual blocks [90]. This network significantly reduces the num-

ber of parameters required to regress disparity compared to the seminal approaches

of [241, 75, 126]. Since we are interested in scale estimation, however, we can fur-

ther simplify the network architecture. The model is built using three main building

blocks: a feature extractor block, a disparity estimator block, and an upsampler block

repeated at multiple image scales as shown in Figure 4-3.

The feature extractor block is built using four 3 × 3 convolutional layers with

ReLU activations [149] arranged with skip connections into two residual blocks [90].

The first convolutional layer in the block also performs downsampling with a stride
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of 2. The number of filters depends on the image scale. The disparity estimator

block is composed of a series of four 3 × 3 residual layers, with the first three using

ReLU activations and the final output layer using a sigmoid activation to ensure

positive disparities. The number of filters per layer in this block is 96, 64, 32, and

8, respectively. The upsampler block is simply a transpose convolution with stride 2

with the same number of filters as the input.

Given an input image of a particular resolution, we define 7 pyramid levels of

interest: 𝐿0 (the base image) through 𝐿6 (the coarsest resolution). To ensure compu-

tational efficiency on constrained hardware, we only extract features from 𝐿3 to 𝐿6

by stacking feature extractor blocks with 16, 32, 64, and 128 filters at each respective

scale. At 𝐿6, we attach a disparity estimator block directly to the feature extractor

outputs to yield 𝐷6 – the disparity map for the coarsest image scale. For 𝐿3 to 𝐿5

we take the features from each scale and concatenate them with those from the next

coarsest scale after passing them through an upsampler block. These concatenated

features are then fed into a disparity estimator block to generate 𝐷3 . . . 𝐷5. The finest

disparity maps 𝐷0 . . . 𝐷2 are generated by simple bilinear interpolation for efficiency.

This simple model is expressive enough to learn high-quality (but coarse) disparity

maps despite having only 2.3 million trainable parameters.

Loss Function

We train our network to regress disparities by minimizing a loss function composed

of four terms: a photoconsistency loss 𝑙𝑝, a left-right consistency loss 𝑙𝑙𝑟, a disparity

regularization term 𝑙𝑟, and a supervision term 𝑙𝑠, defined at each image scale:

𝑙(𝑓(𝐼𝑙; 𝜃), 𝐼𝑙, 𝐼𝑟) =
6∑︁

𝑖=0
𝜆𝑝

(︁
𝑙𝑝(𝐼 𝑖

𝑙 , 𝐼 𝑖
𝑙 ) + 𝑙𝑝(𝐼 𝑖

𝑟, 𝐼 𝑖
𝑟)

)︁
+ 𝜆𝑙𝑟𝑙𝑙𝑟(𝐷𝑖

𝑙 , 𝐷𝑖
𝑟)+

𝜆𝑟

(︁
𝑙𝑟(𝐷𝑖

𝑙) + 𝑙𝑟(𝐷𝑖
𝑟)

)︁
+ 𝜆𝑠

(︁
𝑙𝑠(𝐷𝑖

𝑙) + 𝑙𝑠(𝐷𝑖
𝑟)

)︁
.

(4.4)

The photoconsistency term 𝑙𝑝 measures the photometric error between the input

image 𝐼 and the image predicted using the estimated disparity maps 𝐼̂. Following

Godard et al. [75], we set 𝑙𝑝 to be a combination of structural similarity SSIM and a
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Figure 4-3: Network Architecture – Our network follows the pyramidal structure
of [169] with a series of feature extractor blocks and disparity estimator blocks at
several image scales. Each processing block is comprised of residual blocks [90] with
the number of filters varying depending on the pyramid level.

94



simple 𝐿1 error:

𝑙𝑝(𝐼, 𝐼̂) = 1
𝑁

∑︁
u∈Ω

𝛼
1− SSIM(𝐼(u), 𝐼̂(u))

2 + (1− 𝛼)|𝐼(u)− 𝐼̂(u)|, (4.5)

where 𝑁 is the number of pixels in the image at a given scale and 𝛼 > 0 controls the

weighting between the SSIM and 𝐿1 terms.

The left-right consistency loss 𝑙𝑙𝑟 measures the discrepancy between the left and

right disparity maps after warping them into each other:

𝑙𝑙𝑟(𝐷𝑙, 𝐷𝑟) = 1
𝑁

∑︁
u∈Ω
|𝐷𝑙(u)−𝐷𝑟(u + 𝐷𝑙(u))|+ |𝐷𝑟(u)−𝐷𝑙(u + 𝐷𝑟(u))|. (4.6)

The disparity regularization term 𝑙𝑟 penalizes non-smooth disparity maps where

the image gradient is low:

𝑙𝑟(𝐷) = 1
𝑁

∑︁
u∈Ω

𝑒−||∇𝑥𝐼(u)||∇𝑥𝐷(u) + 𝑒−||∇𝑦𝐼(u)||∇𝑦𝐷(u). (4.7)

This loss is applied to both the left and right disparity maps.

The final supervision loss 𝑙𝑠 measures the Huber error between the estimated

disparity maps 𝐷𝑙 and 𝐷𝑟 and disparity maps generated using traditional block-

matching 𝐵𝑙 and 𝐵𝑟:

𝑙𝑠(𝐷) = 1
𝑁

∑︁
u∈Ω
||𝐷(u)−𝐵(u)||𝜖, (4.8)

where 𝜖 > 0 is the parameter that governs when the Huber norm switches between

squared and linear error.

4.2.2 Local Visual Odometry

Our local monocular VO pipeline is divided into a frontend module that builds a

factor graph 𝒢𝐿 = (𝒱𝐿,ℱ𝐿) from the raw image stream and a backend module that

optimizes variables 𝒱𝐿 (see Figure 4-4). 𝒱𝐿 contains keyframe poses 𝒦𝐿 and landmark

mapℳ𝐿. The factor set ℱ𝐿 is composed of reprojection factors 𝑟𝑝 that link keyframes
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Figure 4-4: Factor Graphs – Our monocular SLAM backend is composed of two factor
graphs: a local visual odometry (VO) graph (left) and a global pose graph (right) The
local VO module estimates unscaled camera poses and landmarks, while the global
pose graph fuses marginalized keyframes from the local VO module with metric scale
factors generated by our neural network.

and landmarks.

Frontend

At each new frame 𝐼𝑘, we detect corners using the method of [198] and track them

from frame to frame using Lucas-Kanade [133, 11]. When the average pixel motion

of the features between the last keyframe and current image exceeds a threshold,

we create a new keyframe with pose T𝑊
𝑘 ∈ SE(3), initialized by running motion-

only Bundle Adjustment with respect to the existing map ℳ𝐿 = {𝑙𝑖
𝑗} comprised

of landmarks 𝑙𝑖
𝑗. Each landmark 𝑙𝑖

𝑗 is parameterized by its pixel location u𝑗 ∈ Ω,

its inverse depth 𝜉𝑗 ∈ R+, and the frame it was detected in 𝑖. Features that were

detected in the current frame 𝑘 are initialized as new landmarks. Observations of

pre-existing landmarks in 𝑘 are added to ℱ𝐿 as reprojection factors.

Reprojection Factors

Each time a landmark 𝑙𝑖
𝑗 is observed in a new keyframe 𝑘, we insert a reprojection

factor into the graph that constrains the landmark’s inverse depth and the poses of

the keyframes in which it was observed. Suppose that landmark 𝑙𝑖
𝑗 is observed in

keyframe 𝑘 at pixel location p𝑗 ∈ Ω. The reprojection error 𝑟𝑝 from this observation
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is given by

𝑟𝑝(T𝑊
𝑖 , T𝑊

𝑘 , 𝑙𝑖
𝑗) = 𝜋

(︁
KT𝑘

𝑊 T𝑊
𝑖 K−1ū𝑗/𝜉𝑗

)︁
− p𝑗. (4.9)

Backend

After a new keyframe is initialized and all new factors are added to the graph, we

enqueue a solve operation that will take place in a background thread. The total cost

represented by 𝒢𝐿 can be written as

𝐸𝐿(𝒦𝐿,ℳ𝐿) =
∑︁

𝑖,𝑗,𝑘∈ℱ𝐿

||𝑟𝑖𝑗𝑘
𝑝

(︁
T𝑊

𝑖 , T𝑊
𝑗 , 𝑙𝑖

𝑘

)︁
||𝜖 (4.10)

where || · ||𝜖 represents the Huber norm with parameter 𝜖 > 0.

This objective function is a (robust) sum of squared residuals, which we can op-

timize using the Levenberg-Maquardt algorithm [135, 156].

Marginalization

We marginalize out old keyframes to ensure real-time processing. Suppose we wish

to marginalize out keyframe 𝑘 and its child landmarks. We will denote this set of

variables by 𝑣𝑦 = {T𝑊
𝑘 , {𝑙𝑘

𝑗 }}. We then find the factors ℱ𝑠𝑒𝑝 that connect 𝑣𝑦 to

𝒢𝐿. Let 𝑣𝑥 denote the variables in 𝒱𝐿 that are connected to ℱ𝑠𝑒𝑝, but are not in 𝑣𝑦.

The variables 𝑣𝑥 and 𝑣𝑦 and the factors ℱ𝑠𝑒𝑝 form a subgraph 𝒢𝑠𝑒𝑝 ⊂ 𝒢𝐿. The cost

associated with this subgraph is given by

𝐸𝑠𝑒𝑝(𝑣𝑥, 𝑣𝑦) =
∑︁

𝑖,𝑗,𝑘∈ℱ𝑠𝑒𝑝

||𝑟𝑝

(︁
T𝑊

𝑘 , T𝑊
𝑗 , 𝑙𝑘

𝑘

)︁
||𝜖. (4.11)

Linearizing 𝑟𝑝 around the current estimates of 𝑣𝑥 and 𝑣𝑦 yields a quadratic cost in

the tangent space of 𝑣𝑥 and 𝑣𝑦. We can then eliminate the 𝑣𝑦 component of the cost

via the Schur complement, leaving a quadratic factor ℱ𝛿 on 𝑣𝑥.

With 𝑣𝑦 eliminated, we remove the variables 𝑣𝑦 and the factors ℱ𝑠𝑒𝑝 from 𝒢𝐿

and add the marginal factor ℱ𝛿 onto the remaining variables 𝑣𝑥. The marginalized
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keyframe T𝑊
𝑘 and landmarks 𝑙𝑘

𝑗 are then passed to the global pose graph (see Sec-

tion 4.2.3).

4.2.3 Global Pose Graph

Once a local keyframe 𝑘 and its child landmarks {𝑙𝑘
𝑗 } are marginalized out of the local

VO module, we freeze the landmark inverse depth values 𝜉𝑗 and insert a new pose

S𝑊
𝑘 ∈ Sim(3) into a global pose graph 𝒢𝐺 = (𝒱𝐺,ℱ𝐺). Here 𝒱𝐺 contains only Sim(3)

pose variables. The factor set ℱ𝐺 contains relative odometry factors, loop closure

factors, and scale factors.

Relative Odometry Factors

We link the newly inserted pose variable 𝑘 to the rest of 𝒱𝐺 using a relative odometry

factor 𝑟𝑜𝑑𝑜𝑚 between 𝑘 and the most recent global pose variable 𝑗. Let Ŝ𝑗
𝑘 denote the

relative transform between 𝑘 and 𝑗 when 𝑘 is marginalized out of the local window.

𝑟𝑜𝑑𝑜𝑚 is then given by

𝑟𝑜𝑑𝑜𝑚(S𝑊
𝑘 , S𝑊

𝑗 ) = log
(︁
S𝑗

𝑊 S𝑊
𝑘 Ŝ𝑘

𝑗

)︁
, (4.12)

where log : Sim(3)→ sim(3) denotes the logarithmic map between Sim(3) and its Lie

algebra sim(3). We let ℱ𝑜𝑑𝑜𝑚 denote the set of all odometry factors.

Loop Closure Factors

When local keyframe 𝑘 is marginalized out, we compare 𝐼𝑘 to the images correspond-

ing to the poses in 𝒱𝐺 using a bag-of-words (BoW)-based descriptor vector [148] gen-

erated with ORB features [182]. If a match is detected, we then match the features

across the two frames and use the matches to estimate the relative Sim(3) transform

between the two poses. A loop factor 𝑟𝑙𝑜𝑜𝑝 is then added to ℱ𝐺 with the same form

as 𝑟𝑜𝑑𝑜𝑚. We let ℱ𝑙𝑜𝑜𝑝 denote the set of all loop factors.
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Scale Factors

We employ the inverse depth estimation network described in Section 4.2.1 to generate

scale measurements for a pose in the global graph 𝒢𝐺. The child landmarks 𝑙𝑖
𝑗 of a

pose S𝑊
𝑖 have arbitrarily scaled inverse depths 𝜉𝑗. Using our inverse depth estimation

network, we can estimate the metric inverse depth 𝑧𝑗 for each landmark. The ratio

of the unscaled inverse depth 𝜉𝑗 to the metric inverse depth 𝑧𝑗 is an estimate of the

scale 𝑠𝑖 of the pose S𝑊
𝑖 . We can add these measurements as unary factors 𝑟𝑠 on the

scale variable 𝑠𝑖:

𝑟𝑠(S𝑊
𝑖 ) = 𝑠𝑖 − 𝜉𝑗/𝑧𝑗. (4.13)

We let ℱ𝑠 denote the set of all scale factors.

Backend

The total cost represented by 𝒢𝐺 can then be written as:

𝐸𝐺(𝒱𝐺) =
∑︁

𝑗,𝑘∈ℱ𝑜𝑑𝑜𝑚

⃒⃒⃒⃒⃒⃒
𝑟𝑜𝑑𝑜𝑚(S𝑊

𝑘 , S𝑊
𝑗 )

⃒⃒⃒⃒⃒⃒2
Σ𝑜𝑑𝑜𝑚

+

∑︁
𝑗,𝑘∈ℱ𝑙𝑜𝑜𝑝

⃒⃒⃒⃒⃒⃒
𝑟𝑙𝑜𝑜𝑝(S𝑊

𝑘 , S𝑊
𝑗 )

⃒⃒⃒⃒⃒⃒2
Σ𝑙𝑜𝑜𝑝

+

∑︁
𝑖∈ℱ𝑠

||𝑟𝑠(S𝑊
𝑖 )||2𝜖𝑠

(4.14)

and can be optimized using Levenberg-Marquardt [135]. Here Σ𝑜𝑑𝑜𝑚, Σ𝑙𝑜𝑜𝑝 ∈ R7×7

denote the odometry and loop noise covariances, respectively and 𝜖𝑠 denotes the

Huber noise parameter for the scale factors.

4.3 Evaluation

We demonstrate the performance of our approach quantitatively using the KITTI

Odometry Benchmark [72] (Section 4.3.2) and qualitatively using handheld imagery

collected from an indoor environment (Section 4.3.3).
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4.3.1 Implementation Details

We designed our depth prediction network using Tensorflow [1] and set the base image

size 𝐿0 to 256 × 512 pixels. For all our experiments, the network is trained for 100

epochs using the Adam optimizer [109] on an NVIDIA 1080Ti GPU with a batch size

of 8 and a learning rate of 0.0001, which is halved after 30 epochs and again after

40 epochs. We follow standard data augmentation practices by randomly flipping

the training images left to right and perturbing the image color, including gamma

and brightness shifting. We set the weights governing the terms in the loss function

as 𝜆𝑝 = 1.0, 𝜆𝑙𝑟 = 1.0, 𝜆𝑟 = 0.1, and 𝜆𝑠 = 10.0. Network inference is triggered at

runtime using the REST API of the tensorflow_serving package.

Our geometric SLAM pipeline is implemented in C++ using the Ceres solver

library [3]. Disparity maps from 𝐿3 (32× 64 pixels) are used to generate the metric

scale factors for each keyframe pose. Both network inference and SLAM optimization

are performed at runtime entirely on an Intel i7 4820K CPU.

4.3.2 KITTI Odometry Evaluation

We evaluate the odometry performance of our approach quantitatively using ten video

sequences from the KITTI Odometry Benchmark [72]. We train our depth prediction

network using the common training split of the raw KITTI stereo data from Eigen et

al. [54], which consists of 22,600 training stereo pairs, 888 validation pairs, and 697

testing pairs.

Of the ten odometry sequences, images from runs 00, 06, 08, 09, and 10 are

included in the training data of the depth prediction network. Runs 00, 03, 04, 05,

and 06 have no overlap with the depth network training data. (Run 01 exhibits very

little texture for feature detection and was not used to evaluate odometry.) Example

trajectories for training and test runs are shown in Figure 4-5.

Quantitative performance is measured using relative pose error (RPE) [207] over

a set of predefined path lengths (100 m to 800 m). Table 4.1 shows the relative

translation error 𝑡𝑟𝑒𝑙 (expressed as a percent of distance traveled) and relative rotation
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KITTI Odometry Benchmark
SfMLearner [241] Monodepth2 [76] DVSO [236] Ours

Tr
ai

n
Run 𝑡𝑟𝑒𝑙 𝑟𝑟𝑒𝑙 𝑡𝑟𝑒𝑙 𝑟𝑟𝑒𝑙 𝑡𝑟𝑒𝑙 𝑟𝑟𝑒𝑙 𝑡𝑟𝑒𝑙 𝑟𝑟𝑒𝑙

02 11.0 4.18 13.1 5.27 0.84 0.22 1.15 0.27
06 10.7 6.31 17.0 12.9 0.73 0.35 2.61 1.22
08 8.93 3.75 14.2 5.98 1.03 0.25 1.71 0.35
09 10.6 4.07 17.7 6.18 0.83 0.21 1.70 0.48
10 11.1 4.06 13.1 6.74 0.74 0.21 1.01 0.37
Avg 10.4 4.11 13.8 5.56 0.89 0.23 1.39 0.33

Te
st

00 15.9 6.19 15.5 6.47 0.71 0.24 4.55 0.93
03 11.1 4.52 10.2 2.93 0.77 0.18 4.72 0.21
04 3.69 3.28 10.6 1.46 0.35 0.06 18.8 0.27
05 10.8 4.66 12.6 6.51 0.58 0.22 2.36 0.33
07 12.7 5.58 10.1 3.25 0.72 0.20 1.09 0.30
Avg 13.7 5.63 14.4 6.69 0.67 0.24 3.85 0.73

Table 4.1: KITTI Odometry Benchmark – Here we show our pipeline’s performance
on the KITTI Odometry Benchmark [72]. 𝑡𝑟𝑒𝑙 denotes the relative translation error
averaged over 100m to 800m path segments (expressed as a percent of distance trav-
eled). 𝑟𝑟𝑒𝑙 denotes the relative rotation error averaged over the same path segments
(expressed as degrees per 100m). The runs labeled “Train” are included in the train-
ing data for both our network and DVSO [236], while the runs labeled “Test” are
not. Note that our method performs competitively on the benchmark despite only
requiring a CPU.

error 𝑟𝑟𝑒𝑙 (expressed in degrees per 100m) for each run averaged over all path lengths,

while Figure 4-6 shows these metrics for each path length averaged over all runs.

We compare our method against two end-to-end SLAM packages (SfMLearner [241]

and Monodepth2 [76]) that are scaled to metric scale and a hybrid learning/geometric

approach DVSO [236]. Note that SfMLearner and Monodepth2 are trained on runs

00-08. DVSO is trained using the same split as our method, but uses additional

supervision from a sparse reconstruction method [55]. We are unable to do a full

comparison to DVSO as the authors have not provided a public implementation of

their technique, and so we compare to their published results.

Our method performs competitively on the benchmark, achieving a relative trans-

lation error of 1.39% and a relative rotation error of 0.33∘ / 100m on the training
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Figure 4-5: KITTI Odometry Performance – Our method gives compelling perfor-
mance on the KITTI odometry benchmark. The left column shows sequences that
were included in the training data of our metric depth prediction network. The right
column shows sequences that were not used to train the network.

runs and 3.85% and 0.73∘ / 100m on the test runs. Scale drift is largely non-existent

in the resulting trajectories. Furthermore, all computation is performed entirely on

the CPU, while other methods require GPU acceleration. Network inference takes

approximately 30 ms per frame. For comparison, the authors of DVSO report that

evaluations of their network take 40 ms per frame on an NVIDIA Titan X Pascal

GPU.

4.3.3 Handheld Odometry Evaluation

In addition to the quantitative results described in the previous section, we also qual-

itatively validate our system with imagery collected using a handheld stereo camera

that captures time synchronized images at 16 Hz. The baseline between the left and
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Figure 4-6: Relative Pose Error vs. Distance Traveled – The plots above show the
relative translation (left) and rotation error (right) on the training (top) and test
(bottom) runs from the KITTI Odometry Benchmark [72]. Our method achieves
competitive performance on the benchmark despite not relying on GPU acceleration.

right cameras is 5 cm. The environment used for the experiment is a large, indoor

laboratory common area and student thoroughfare between classrooms.

We collected a total of 16,980 stereo images, 11,548 of which were used for training

our depth prediction network with 1,510 pairs used for validation. Two complete

runs comprising 3,922 pairs were withheld to test our odometry performance. At

runtime, the images from the left camera were used to compute our metrically scaled

poses. The trajectories for the two test runs are shown in Figure 4-7. In the absence

of groundtruth poses, we compare our monocular odometry estimates against that

of Stereo ORB-SLAM2 [147], a state-of-the-art geometric stereo odometry pipeline.

(Note that as a stereo method, its poses are metrically scaled since the baseline

between the left and right cameras is known.) As evident in Figure 4-7, our method
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Figure 4-7: Handheld Trajectories – We demonstrate our method’s performance using
handheld camera data from an indoor environment. Top row: Sample training images
from the environment. Bottom row: Comparison of poses from our approach (blue)
against those of Stereo ORB-SLAM2 [147] on two test trajectories. Note that Stereo
ORB-SLAM2’s poses are correctly scaled as the stereo baseline is known a priori.
Our technique is able to generate correctly scaled poses using only a single monocular
camera.

is able to produce accurate poses at the correct metric scale despite only using a

single monocular camera.

4.3.4 Improvements

In the preceding sections we demonstrated our method’s ability to accurately track

camera motion at the correct metric scale without additional sensors. There are,

however, several aspects of the system that could be improved upon. First we note

that although the true metric scale of the SLAM solution is correctly inferred over

time, the poses remain unscaled until the first successful solve of the global pose graph.
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Furthermore, the scale may jump while metric information is being accumulated into

the graph via our unary scale factors. Developing a better initialization scheme and a

more graceful way to handle these scale jumps would significantly improve the overall

robustness of the approach. Finally, the ability of our method to correctly infer metric

scale is limited by the data used to train our coarse depth prediction network. If the

environment used when testing the system is significantly different from that used

to train the network, performance will likely degrade. Improving the ability of the

network to generalize beyond the initial training data (e.g., using some form of online

training or domain adaption) would make the approach far more powerful.

4.4 Conclusion

In this chapter, we proposed an efficient method for monocular SLAM that is capa-

ble of estimating metrically-scaled, scale drift-free motion without additional sensors

or compute by integrating metric depth predictions from a neural network into a

geometric SLAM pipeline. This network leverages prior information about a scene

distilled from large datasets of images to render metric scale observable. Since it is

designed specifically for metric scale estimation, it can be much smaller and faster

than competing systems. We make several improvements to our network architecture

and training procedure to address the lack of depth observability when using coarse

image input that allows us to estimate spatially coarse, but depth-accurate predic-

tions in only 30 ms per frame. We show compelling results on the KITTI benchmark

dataset in addition to real-world experiments with a handheld camera.
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Chapter 5

View-Compensated Multi-View

Stereo Depth Estimation

In this chapter we present an efficient method for dense monocular depth estimation

that exploits known camera viewpoint changes to properly compensate features for

robust pixel matching. We formulate the approach in the multi-view stereo (MVS)

framework. MVS is a fundamental problem in computer vision where the geometry

of a scene is estimated from a set of images taken from known, but otherwise un-

constrained, viewpoints. While the scene geometry may be represented in a variety

of ways, a common design choice is to designate one of the images as a privileged

reference and estimate a depthmap with respect to that image. Classical meth-

ods [193, 77] generally start by defining a volume in the reference image’s coordinate

frame by sampling a set of depths for each reference pixel. Matching costs that record

how consistent a depth hypothesis is with the neighboring (or comparison) images

are then computed by projecting each pixel at each candidate depth into the com-

parison views and comparing intensities. After filtering the volume to reduce noise,

the reference depthmap that minimizes the matching costs can be extracted.

Plane Sweep stereo techniques [35, 185, 211] compute the matching cost volume

more efficiently by interpreting the volume as a set of planes, one for each depth

hypothesis. The comparison images can then be projected (or warped) onto each

plane, creating a set of transformed images (one for each depth hypothesis) that
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Figure 5-1: MultiViewStereoNet – We propose a novel, learning-based method for
multi-view stereo (MVS) depth estimation that we call MultiViewStereoNet. By
combining coarse stereo matching costs, guided refinement, and incrementally com-
puted features that compensate for known viewpoint changes, our method is able to
achieve reconstruction accuracy comparable to the state-of-the-art, while being sig-
nificantly faster at runtime. The top row of the figure above shows input images that
are used to generate the depthmap in the bottom right. The groundtruth depthmap
is shown in the bottom left for comparison.

are then compared to the reference image directly to compute matching costs. The

relative simplicity of the Plane Sweep architecture has made it the preferred way

MVS solutions are formulated (which we will continue in this chapter).

In recent years, deep learning approaches have shown great promise at solv-

ing the MVS problem by exploiting prior information learned from large training

datasets [96, 95, 237]. Instead of using raw pixel intensities or hand-crafted feature

extractors and filtering schemes, these systems learn the MVS components from data

by training stacked layers of convolutional neural networks (CNNs). The weights of

these convolutional layers can encode additional global context and semantic infor-

mation that can improve estimation performance in the presence of lighting changes,

low texture, and other imperfections common in natural scenes.
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Despite the rapid progress enabled by learned feature descriptors, MVS depth

estimation is still a challenging problem in the wild, primarily due to the difficulty in

robustly matching dense image features across the viewpoint changes common with

freely moving cameras. Objects in a scene can appear radically different, or be oc-

cluded entirely, when viewed from disparate viewing angles or lighting. Any learning-

based system must also generalize beyond the data used to train the network. MVS

is a particularly difficult problem in this sense, as supporting wholly unconstrained

camera motion at test time requires extensive training samples to ensure adequate

coverage of the operating regimes.

Designing networks that can learn distinctive feature representations from lim-

ited data is therefore of primary importance to solving MVS. Current learning-based

methods, however, do not leverage all information available to aid this process. In

particular, modern networks extract learned features from each input image indepen-

dently before projecting them onto the planes that comprise the cost volume. By

applying the projection after feature extraction, the learned features must implic-

itly compensate for this projection and exhibit scale and rotation invariance despite

never being exposed to the projection parameters. We assume we know the projec-

tion parameters (the camera intrinsics and extrinsics), however, which suggests more

structure can be imposed on the feature extraction layers.

Our key insight is that by compensating for the known viewpoint changes during

the feature extraction process itself, the network can learn features that are specific

to the desired reference frame and projected by construction. This technique lessens

the burden on the network to achieve scale and rotation invariance and therefore

increases robustness to viewpoint changes during matching.

Compensating for viewpoint changes in this way can be computationally expen-

sive, however, if care is not taken. In principle, we must extract features not from a

single comparison image, but from the set of warped comparison images produced by

projecting the image data onto the planes that comprise the cost volume. One can

naively apply a conventional feature extractor CNN to each warped image, but this

approach quickly grows unmanageable as the number of planes (i.e., depth samples)

109



Matching Costs(warped)

Project image onto plane at depth d

Figure 5-2: Plane Sweep – Plane Sweep [35, 185, 211] is a method for MVS that uses
homography transforms to efficiently compute matching cost volumes. After desig-
nating one of the input images as a reference frame, a series of planes in that frame are
generated by sampling depth hypotheses for each pixel. Comparison images are then
projected onto these planes using homographies and compared to the reference image
to generating matching costs. The depth hypothesis for each pixel that minimizes
that costs can then be extracted, producing a dense depthmap.

increases and the feature extractor must be run repeatedly. Alternatively, layers of

3D convolutions could be used to extract features from the volume generated by con-

catenating the warped images, but these more complex layers are similarly expensive

and prevent the use of commonly accepted network architectures built on stacks of

2D convolutions.

In this chapter, we overcome these limitations in two key ways. First, we gen-

eralize the approach of Khamis et al. (StereoNet) [108] from the two-view, rectified

stereo domain to the multi-view, unrectified setting using differentiable Spatial Trans-

former Networks (STNs) [100]. Like StereoNet, we compute features and matching

costs at a reduced image scale to produce coarse depthmaps that are then iteratively

upsampled and refined with the image data as guidance. This type of architecture

retains the benefits of learned stereopsis, but drastically reduces the amount of costly

high-resolution feature matching for improved speed.

Second, we incrementally compute our projected features such that the bulk of

the feature extraction layers need only be executed a single time across all depth
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hypotheses. We initially generate a single feature map corresponding to the furthest

depth plane in the volume with a conventional feature network. Then we apply

a series of inexpensive homographies, coupled with simple refinement layers, that

incrementally warp this feature map to other depth planes in the reference volume.

The combination of these two techniques allows our method, which we call Multi-

ViewStereoNet, to achieve reconstruction accuracy comparable to the state-of-the-art,

while being significantly more efficient.

5.1 Related Work

5.1.1 Two-View Stereo

Two-view stereo generally refers to the scenario where two cameras are rigidly mounted

along a narrow baseline such that the corresponding images can be rectified onto a

common image plane to estimate disparities [92, 188]. Early attempts to apply ma-

chine learning to this problem replaced one or more of classical building blocks with

learned components before completely end-to-end were proposed. Zbontar and Le-

Cun, for example, proposed a network to compute matching costs from small image

patches, before using the costs in a classical pipeline [239]. Mayer et al. developed a

network that directly regresses disparity using stacks of convolutions and deconvolu-

tions [138] Kendall et al. aggregate global context in the stereo cost volume using 3D

convolutions [107]. Khamis et al. similarly use 3D convolutions to aggregate informa-

tion in the cost volume, but significantly reduce the spatial resolution of the volume

for speed before applying image-guided refiners to upsample the resulting dispari-

ties [108]. Our solution takes inspiration from this network structure and generalizes

it to the multi-view setting.

5.1.2 Multi-View Stereo

Learning-based approaches to MVS often follow the Plane Sweep paradigm [35], where

matching costs from multiple images are aggregated in a single reference volume
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Figure 5-3: MultiViewStereoNet Block Diagram – In our network, coarse-resolution
features are extracted from the input images using two subnetworks: a traditional
CNN for the reference image and a novel CNN that compensates for the known
viewpoint change for the comparison images. The two sets of feature volumes are
then combined to form a cost volume, from which a coarse depthmap is extracted. A
series of image-guided refiners is then used to upsample the depthmap to the input
image size.

after geometric warping [35, 185, 211]. Yao et al., for example, extract features

per image, transform them into the reference volume using a differentiable warp

operation, then regularize the costs using multi-scale 3D convolutions [237]. Im et

al. compute matching costs similarly, but refine the costs for each depth hypothesis

using the reference image features [96]. Wang and Shen compute a multi-view cost

volume using classical techniques, but then regress the depths using an encoder-

decoder network [227]. Huang et al., on the other hand, estimate depthmaps on

64× 64 pixel patches before tiling the results to the input resolution [95].

5.2 Method

The MultiViewStereoNet architecture is divided into four primary components as

shown in Figure 5-3 and Figure 5-4. The reference image is first passed through a

conventional feature extraction network composed of strided 2D convolutional layers
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Figure 5-4: Incremental Viewpoint-Compensated Feature Network – Our novel feature
network compensates for known viewpoint changes by projecting the comparison im-
age before (rather than after) extraction. We incrementally compute each plane 𝐹𝑖

of the comparison feature volume (corresponding to depth hypothesis 𝑑𝑖) from the
previous plane using the relative homography Δ𝐻 between the planes. This allows
for the feature maps to be computed for each depth hypothesis, while only requiring
the bulk of the convolutional layers to be executed once, increasing the network’s
speed.

with residual connections [90] to generate a set of reference features. Each compar-

ison image, on the other hand, is passed through our novel, viewpoint-compensated

feature network that incrementally computes projected features for each candidate

depth. These feature maps are then concatenated to form a warped feature volume.

After tiling the reference feature map to create an identically sized feature volume,

the absolute difference of the two volumes forms our coarse cost volume. We then

apply a series of 3D convolutions and normalization steps to filter the costs, before

extracting depths using a softargmin operator. The coarse depthmap is then passed

through a series of upsampling and image-guided refinement layers to produce the

final depthmap. The estimated depthmap at each image scale is then compared to

the groundtruth depthmap to drive training.

5.2.1 Reference Feature Network

Our reference feature network is derived from that detailed by Khamis et al. [108].

The reference image is first passed through 4 2D convolutional layers with kernel size
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5, stride 2, and 32 output channels. The resulting feature map is then passed through

6 residual blocks with kernel size 3, stride 1, and the same 32 output channels. We

make two modifications to the residual connections described in [108]. First, we use

only a single convolution in the skip connection, instead of the normal two as described

by He et al. [90], which achieves similar performance with fewer parameters. Second,

we replace the batch normalization [97] layer with a group normalization layer [233]

to better support small batch sizes during training. For an image of size 𝐻 ×𝑊 × 3,

this network produces a feature map of size 𝐻 ′×𝑊 ′×𝐶 for 𝑊 ′ = 𝑊/16, 𝐻 ′ = 𝐻/16,

and 𝐶 = 32. Given a set of 𝐷 candidate depth samples {𝑑𝑖}𝐷
𝑖=1, we then tile the

feature map to produce our reference feature volume of size 𝐻 ′ ×𝑊 ′ ×𝐷 × 𝐶.

5.2.2 Incremental Viewpoint-Compensated Feature Network

Before describing our incremental, viewpoint-compensated feature network, we first

review some key concepts from multi-view geometry [89, 210]. Assume we have two

cameras: a reference camera 𝑟 and a comparison camera 𝑐, with the same intrinsic

parameters 𝐾 ∈ R3×3. Let Ω𝑟, Ω𝑐 ⊂ R2 denote the image domain of each camera,

respectively. Let 𝐼𝑟 : Ω𝑟 → R3 and 𝐼𝑐 : Ω𝑟 → R3 designate the images from the two

cameras with 3 channels (e.g., representing RGB values). Finally, let 𝑅𝑟
𝑐 ∈ SO(3) and

𝑡𝑟
𝑐 ∈ R3 represent rotation and translation of the comparison camera with respect to

the reference camera, which we assume are known.

If the scene geometry can be represented by a single plane with normal vector

𝑛 ∈ R3 and depth 𝑑 > 0 with respect to the reference coordinate system, the transform

that projects (homogeneous) pixels from Ω𝑟 to Ω𝑐 is given by the function 𝐻(𝑑) : Ω𝑟 →

Ω𝑐, which can be represented by a 3× 3 homography matrix:

𝐻(𝑑) = 𝐾(𝑅𝑐
𝑟 − 𝑡𝑐

𝑟𝑛
𝑇 /𝑑)𝐾−1. (5.1)

The image 𝐼𝑑 : Ω𝑟 → R3 represents the projection of the comparison image onto the
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reference plane at depth 𝑑 and is given by

𝐼𝑑(u) = 𝐼𝑐(𝜋(𝐻(𝑑)ū)), (5.2)

where x̄ = (x, 1) signifies a homogeneous pixel coordinate and 𝜋(𝑥, 𝑦, 𝑧) = (𝑥/𝑧, 𝑦/𝑧)

denotes the perspective projection function. When implemented, the pixel domain

Ω𝑟 is uniformly sampled to generate discrete pixels before applying 𝐻(𝑑) and the

indexing into 𝐼𝑐 is accomplished using bilinear interpolation, which describes a type

of Spatial Transformer Network (STN) [100].

In Plane Sweep stereo [35, 185, 211], one computes a series of such transformed

images (one for each candidate depth 𝑑𝑖), which are then compared to the reference

image to compute matching costs. In existing learned MVS systems, the original im-

age channels are simply replaced by learned features 𝐹 : Ω → R𝐶 , where 𝐶 denotes

the number of feature channels. Note, however, that the feature extraction occurs

before the projection, which means the features must implicitly compensate for any

scale, rotation, or perspective changes between the cameras. One could extract fea-

tures for each warped image 𝐼𝑑 independently or concatenate the 𝐼𝑑 into a volume

and apply 3D convolutions, but both options are computationally expensive. Instead,

we will take an incremental approach to feature extraction, building the feature map

𝐹𝑖 for candidate depth 𝑑𝑖 from the neighboring feature map 𝐹𝑖+1 for depth 𝑑𝑖+1.

We compute the initial feature map 𝐹𝐷 corresponding to the maximum candidate

depth 𝑑𝐷 by transforming the comparison image 𝐼𝑐 by 𝐻(𝑑𝐷) to form 𝐼̃𝑑𝐷
and applying

the feature extraction network described in Section 5.2.1. Computing 𝐹𝐷−1 from 𝐹𝐷

is accomplished by applying the relative homography Δ𝐻(𝑑𝐷−1, 𝑑𝐷) from depth plane

𝑑𝐷−1 to 𝑑𝐷 given by

Δ𝐻(𝑑𝐷−1, 𝑑𝐷) = 𝐻(𝑑𝐷)−1𝐻(𝑑𝐷−1). (5.3)

Note that these homographies use a scaled intrinsic matrix to reflect the downsam-
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(a) Homography for two planes. (b) Relative homography between planes.

Figure 5-5: Relative Homography – Our proposed feature network relies on the rela-
tive homography between two planes in order to incrementally compute feature maps.
On the left we have the homographies 𝐻(𝑑𝐷) and 𝐻(𝑑𝐷−1), which each transform
pixels from the reference image domain to the comparison image domain assuming
the points lie on planes at depth 𝑑𝐷 and 𝑑𝐷−1, respectively. The relative homog-
raphy transforms pixels between these two planes directly, show in the figure on
the right. The relative homography can be computed from 𝐻(𝑑𝐷) and 𝐻(𝑑𝐷−1) as
Δ𝐻(𝑑𝐷−1, 𝑑𝐷) = 𝐻(𝑑𝐷)−1𝐻(𝑑𝐷−1).

pling of the image domain. The features 𝐹𝐷−1 can then be computed as

𝐹𝐷−1(u) = 𝐹𝐷(𝜋(Δ𝐻(𝑑𝐷−1, 𝑑𝐷)u). (5.4)

We once again use an STN to implement this projection: the domain of the feature

maps is discretized to yield features at individual pixels before applying the relative

homography and indexing into 𝐹𝐷 based on the projected pixel locations is accom-

plished using bilinear interpolation.

This incremental technique allows for the feature maps for all candidate depths to

be computed using only a single invocation of the feature extraction network, while

still appropriately compensating for the known viewpoint changes. It is possible,

however, that the relative homographies Δ𝐻(𝑑𝑖−1, 𝑑𝑖) generate pixel locations that

lie outside (or on the boundary) of the valid domain in the parent feature map 𝐹𝑖.

To account for these edge cases, we apply another instance of refinement using the

warped image as guidance. We concatenate 𝐹𝑖 and 𝐼𝑖 along the channel dimension and

apply 3 convolutional layers with kernel size 3, stride 1, with a single skip connection.

The outputs of these layers are then added to the original feature map.
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Truth DPSNet Ours

Figure 5-6: DeMoN Depthmaps – Here we show the qualitative reconstruction perfor-
mance of MultiViewStereoNet on the DeMoN benchmark test set [223]. MultiView-
StereoNet is capable of producing depthmaps comparable to DPSNet, while being
significantly faster.

After feature refinement, we concatenate the feature maps across all the depth

samples into a warped feature volume of size 𝐻 ′ ×𝑊 ′ ×𝐷 × 𝐶.

5.2.3 Cost Volume Formulation and Filtering

To compute matching costs, we take the absolute difference of the reference and

warped comparison feature volumes described in Section 5.2.1 and 5.2.2. Although

there is some evidence that asymmetric distance measures [108] or concatenating

feature channels [107] improves matching quality, we found simple absolute differences

to work well.

The cost volume is passed through a series of 3D convolutional layers designed

to pool global context information and reduce noise. We follow the architecture
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Figure 5-7: GTA-SfM Depthmaps – MultiViewStereoNet is capable of producing com-
pelling depth estimates on challenging imagery, such as that from the GTA-SfM
dataset. Here, example depthmaps from the test set are shown.

proposed by Khamis et al. [108] and use 4 3D convolutional layers with each followed

by a groupnorm [233] operation and LeakyReLU activation. The input and output

channels for these layers are of equal size. A final 3D convolutional layer is then

applied which reduces the feature dimension to a scalar, resulting in a volume of size

𝐻 ′ ×𝑊 ′ ×𝐷. The kernel sizes for all layers is set to 3× 3× 3.

5.2.4 Depth Regression and Guided Refinement

We extract a coarse depthmap of size 𝐻 ′ ×𝑊 ′ from the cost volume before upsam-

pling and refining the outputs to the input resolution. Relying on upsampling and

refinement, rather than high-resolution feature matching, has significant advantages

in terms of efficiency, as described by Khamis et al. in StereoNet [108]. StereoNet,
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however, assumes the input images are rectified, meaning the feature projection de-

scribed in Equation 5.2 can be accomplished by a simple shift of indices. Here,

we employ a similar upsampling and guided refinement scheme, but apply it to our

multi-view features and cost volume.

For a given pixel u, let 𝑐𝑖 denote the matching costs for depth sample 𝑖. We form

a probability distribution 𝜎 over the depths by applying the softmin operator:

𝜎(𝑐𝑖) = exp(−𝑐𝑖)∑︀
𝑗 exp(−𝑐𝑗)

. (5.5)

The depth 𝐷(u) for pixel u is then given by the mean of this distribution, 𝐷(u) =∑︀
𝑖 𝑑𝑖𝜎(𝑐𝑖). The combination of these two operations (softmin following by an aver-

age) is a differentiable approximation of the arg min function.

Next, we iteratively upsample the coarse depthmap using bilinear interpolation

and then pass it through an image-guided refinement network to resolve fine struc-

tures. The refinement network concatenates the coarse depthmap and appropriately-

sized reference image before passing them through an initial convolutional layer with

32 output channels. Group normalization is applied along with a LeakyReLU activa-

tion. After this, 6 dilated residual block layers are applied, where each block consists

of a single convolution with group normalization and LeakyReLU activation, followed

by a skip connection. The dilation strides are set to (1, 2, 4, 8, 1, 1). The input and

output channels for these layers is kept at 32. A final convolution is then applied to

reduce the output to a single channel representing a depth residual. This residual

is then added to the input depthmap. We apply an initial refinement round to the

coarse depthmap extracted from the cost volume followed by 4 rounds of upsampling

by a factor of 2 and refinement to yield the final output depthmap of size 𝐻 ×𝑊 .

5.2.5 Multi-View Fusion

In conventional Plane Sweep Stereo, fusing depth information from multiple compar-

ison views is achieved by simply averaging matching costs for each comparison image.

We found this approach to be brittle in a learned MVS context since certain locations
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in the reference volume will only be observable from a subset of the cameras. Careful

bookkeeping is then required to keep track of these locations and perform the aver-

aging correctly. We found performing the fusion at the depthmap level, rather than

the cost volume level, to be more robust. We pass each comparison image through a

subset of the network to produce a set of coarse depthmaps of size 𝐻 ′×𝑊 ′. We then

average these depthmaps and then proceed with the final upsampling and refinement

layers described in Section 5.2.4.

5.3 Evaluation

5.3.1 Implementation Details

We implemented our network using PyTorch [162]. Training was performed on 8

NVIDIA V100 GPUs with a batch size of 8 per GPU, while testing was performed on a

single NVIDIA GTX 1080Ti with a batch size of 1. We used the Adam optimizer [109]

for training, with a learning rate of 0.001. We use the pseudo-Huber loss described

by Barron [12] against groundtruth depth labels applied to the depthmaps at each

image scale. The depth samples {𝑑𝑖} for our cost volumes are generated by sampling

uniformly in inverse depth space between 0 (infinite depth) and a maximum inverse

depth value computed for each training example based on a maximum disparity of

192 pixels. We set 𝐷 = 12 for all experiments. To remove any dependence on the

metric scale of the geometry, we normalize the camera poses to have unit baseline

before computation. All training was performed using two input images per sample

(i.e., one depthmap is estimated using two images), although multiple images may be

used during test time.

5.3.2 DeMoN Benchmark

We evaluate our approach against the DeMoN dataset [223] commonly used to bench-

mark MVS systems. This dataset includes 51k training scenes assembled from both

real and simulated imagery. We use the same training split as [96], which yields 168k
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DeMoN Benchmark
Dataset Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSElog ↓ 𝛼1 ↑ 𝛼2 ↑ 𝛼3 ↑ Runtime [sec] ↓

M
V

S
COLMAP 0.38 1.26 1.48 0.50 0.48 0.66 0.84 -
DeepMVS 0.23 0.62 1.15 0.30 0.67 0.89 0.94 80.9
MVDepthNet 0.20 ± 0.02 0.47 ± 0.10 0.71 ± 0.06 0.25 ± 0.02 0.80 ± 0.02 0.90 ± 0.01 0.94 ± 0.01 0.121 ± 0.005
DPSNet 0.08 ± 0.01 0.07 ± 0.01 0.40 ± 0.03 0.15 ± 0.01 0.90 ± 0.01 0.96 ± 0.01 0.98 ± 0.01 0.630 ± 0.001
Ours 0.18 ± 0.03 0.36 ± 0.18 0.59 ± 0.06 0.22 ± 0.01 0.79 ± 0.02 0.92 ± 0.01 0.96 ± 0.01 0.065 ± 0.001

SU
N

3D

COLMAP 0.62 3.24 2.32 0.66 0.33 0.55 0.72 -
DeepMVS 0.28 0.44 0.94 0.36 0.56 0.74 0.90 80.9
MVDepthNet 0.18 ± 0.01 0.19 ± 0.04 0.55 ± 0.03 0.24 ± 0.01 0.74 ± 0.02 0.91 ± 0.01 0.96 ± 0.01 0.121 ± 0.005
DPSNet 0.16 ± 0.01 0.13 ± 0.01 0.45 ± 0.02 0.20 ± 0.01 0.79 ± 0.02 0.93 ± 0.01 0.98 ± 0.01 0.630 ± 0.001
Ours 0.19 ± 0.02 0.24 ± 0.06 0.55 ± 0.04 0.21 ± 0.01 0.76 ± 0.02 0.92 ± 0.01 0.97 ± 0.01 0.065 ± 0.001

Sc
en

es
11 COLMAP 0.62 3.71 3.66 0.87 0.39 0.57 0.67 -

DeepMVS 0.21 0.37 0.89 0.27 0.69 0.89 0.97 80.9
MVDepthNet 0.08 ± 0.01 0.13 ± 0.01 0.63 ± 0.02 0.16 ± 0.01 0.93 ± 0.01 0.97 ± 0.01 0.98 ± 0.01 0.121 ± 0.005
DPSNet 0.09 ± 0.01 0.20 ± 0.02 0.76 ± 0.03 0.15 ± 0.01 0.93 ± 0.01 0.97 ± 0.01 0.98 ± 0.01 0.630 ± 0.001
Ours 0.13 ± 0.01 0.27 ± 0.02 0.92 ± 0.02 0.22 ± 0.01 0.87 ± 0.01 0.95 ± 0.01 0.97 ± 0.01 0.065 ± 0.001

RG
BD

COLMAP 0.54 1.76 1.51 0.72 0.27 0.50 0.72 -
DeepMVS 0.29 0.43 0.87 0.35 0.55 0.81 0.92 80.9
MVDepthNet 0.21 ± 0.01 0.36 ± 0.04 1.07 ± 0.06 0.34 ± 0.02 0.66 ± 0.02 0.82 ± 0.02 0.89 ± 0.01 0.121 ± 0.005
DPSNet 0.16 ± 0.01 0.23 ± 0.04 0.73 ± 0.06 0.24 ± 0.02 0.79 ± 0.02 0.90 ± 0.01 0.95 ± 0.01 0.630 ± 0.001
Ours 0.17 ± 0.01 0.25 ± 0.04 0.80 ± 0.05 0.22 ± 0.01 0.76 ± 0.02 0.92 ± 0.01 0.97 ± 0.01 0.065 ± 0.001

Table 5.1: DeMoN Benchmark – Our network achieves reconstruction accuracy com-
parable to the state-of-the-art, while being significantly faster. Here we compare
MultiViewStereoNet to existing methods COLMAP [190], DeepMVS [95], MVDepth-
Net [227], and DPSNet [96] on the two-view DeMoN Benchmark. The rows of the ta-
ble correspond to the different splits of the datasets (MVS, Sun3D, Scenes11, RGBD),
while the columns show commonly used depth accuracy metrics such as Abs Rel (the
mean absolute relative depth error) and depth completion metrics such as 𝛼1 (the
fraction of pixels with less than 25% depth error). Each metric is computed per
depthmap and then averaged across the test set. Standard errors are shown beside
each mean (standard errors for COLMAP and DeepMVS are not available). The
top two performing methods according to each metric are bolded. Runtime metrics
were computed using VGA image resolution on an NVIDIA GTX 1080Ti GPU for
all algorithms.

training samples and 708 test samples at VGA resolution. Groundtruth depths are

provided via RGBD sensors or simulation. For this dataset, we train for 45 epochs

and compute standard depth metrics against groundtruth that are summarized in Ta-

ble 5.1. We compare our proposed network against DPSNet [96], MVDepthNet [227],

DeepMVS [95], and a traditional reconstruction pipeline based on COLMAP [190].

As shown in Table 5.1, our approach achieves depth reconstruction accuracy and com-

pleteness comparable to the state-of-the-art, while being significantly more efficient.

Figure 5-6 shows qualitative performance on the DeMoN test set, where we compare

favorably with DPSNet.
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GTA-SfM Dataset
Images Method Abs Rel ↓ RMSE ↓ 𝛼1 ↑ Runtime [ms] ↓

2 DPSNet 0.103 26.97 0.94 662
2

Ours

0.084 19.69 0.923 65.1
3 0.077 19.47 0.932 79.7
4 0.075 19.41 0.934 92.7
5 0.075 19.40 0.935 106.5

Table 5.2: Multi-View Evaluation – Our network can fuse information from multiple
images to produce depth estimates. Here we show depth estimation performance as
the number of comparison images increases (one image is designated as the reference).

5.3.3 Multi-View Evaluation

We also evaluate our network on the GTA-SfM dataset presented by Wang and

Shen [228]. This dataset contains 17k training images and 2k testing images (VGA

resolution) from trajectories produced inside the Grand Theft Auto V video game.

For each training image, we randomly sample a single comparison view from the

camera sequence to form training samples. For each test image, we randomly sample

𝑁 comparison views. We train on this dataset for 150 epochs and compare recon-

struction performance against DPSNet [96] as the number of comparison views varies.

Table 5.2 summarizes the results, which shows our method achieves better depth ac-

curacy and completeness than DPSNet. Furthermore, performance increases as more

comparison images are used, although the effect quickly plateaus. Each additional

comparison image takes an additional 15 milliseconds to process. Figure 5-1 and

Figure 5-7 shows qualitative performance on this dataset, where again, we compare

favorably with DPSNet.

5.3.4 Viewpoint Compensation Evaluation

We also investigate the effect of viewpoint compensation on reconstruction perfor-

mance using a simple modification of the GTA-SfM test set. For each test sample,

we rotate the comparison image by 180 degrees about the optical axis, simulating

extreme viewpoint changes. (This rotation can be accomplished easily using two
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Figure 5-8: Viewpoint Compensation – Our viewpoint-compensated features take the
known camera poses into account during extraction. Here we compare reconstruction
performance of MultiViewStereoNet, a base network without viewpoint compensa-
tion, and DPSNet on the GTA-SfM dataset using two test sets: a standard test set
and a set where one of the images for each sample is rolled about the optical axis by
180 degrees. Despite being given the parameters of the roll, the base network and
DPSNet see a significant increase in absolute relative depth error (left) and RMSE
depth error (right). MultiViewStereoNet sees no significant difference in performance
across the two test sets. Standard errors are shown above each bar.

“flips” of the image data in succession: a left-right flip, followed by an up-down flip.)

We similarly update the camera poses and compare depth estimation performance

against the unmodified test set. We compare performance on these two test sets

against DPSNet [96] and an additional “base” network that has the same structure

as MultiViewStereoNet, but uses a traditional feature extraction module that does

not compensate for viewpoint changes. In this baseline network, features are ex-

tracted for each right image independently before projecting them onto the planes in

the reference view. The network is otherwise identical to MultiViewStereoNet.

As shown in Figure 5-8, not performing viewpoint compensation can have se-

vere effects on depth quality. Both the base network and DPSNet, which do no

compensation, see a significant increase in both absolute relative depth error and

root-mean-square depth error between the two test sets, despite the same informa-

tion being presented to the networks. Our solution, which does utilize viewpoint

compensation, sees no drop in performance. Figure 5-9 shows the qualitative effect

of compensation, where the DPSNet depthmap suffers a significant drop in quality
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Figure 5-9: Viewpoint Compensation – Here we show the qualitative effect of
viewpoint-compensated features on the generated depthmaps. DPSNet sees a sig-
nificant drop in depth quality when one of the input images is rotated about the
optical axis by 180 degrees. MultiViewStereoNet sees no change in quality.
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when the comparison image is rotated, while that of our solution is unaffected.

5.3.5 Refinement Ablation Experiments

In this section we analyze the effect of the guided refinement layers discussed in

Section 5.2.4 in an ablation study. Our full method uses 5 total refinement layers: two

for the coarsest depthmap resolution (corresponding to a 16× downsampling of the

input) and one for each successive level in a power-of-two image pyramid. Crucially,

the refinement layers use the input images as guidance, filling in missing details in

the depthmap by referring to the image data. We compute depth estimation metrics

on the GTA-SfM test set after removing each refinement layer.

The results are presented in Table 5.3. Each row in the table corresponds to

removing the finest resolution refinement layer remaining from the previous row. As

can be seen, additional refinement layers improve depth estimation performance at

the cost of runtime. In particular, the refinement layer corresponding to the finest

resolution accounts for almost half of the runtime, validating the general strategy

presented in Khamis et al. [108] that suggests that operations at the full resolution

should be avoided when possible, especially expensive feature matching. Resource-

constrained platforms may benefit from forgoing these final refinement layers in order

to bring load and latency to more manageable levels. Future work may focus on

further improving the speed of the fine-resolution refinement layers.

5.3.6 Sensitivity to Pose Errors

Our method assumes knowledge of the input camera poses and is therefore sensitive

to any errors in the pose estimates. To quantify this dependence, we add zero-mean

Gaussian noise onto the true poses of the GTA-SfM test set and compute the absolute

relative depth error and RMSE depth error as the standard deviation of the noise

increases. As can be seen in Figure 5-10, MultiViewStereoNet can tolerate moderate

amounts of noise in translation (up to a standard deviation of 5 cm or so relative to the

normalized 1m baseline) without a severe drop in performance. Depth error begins
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Refinement Ablation Experiments
Method Abs Rel ↓ RMSE ↓ 𝛼1 ↑ Runtime [ms] ↓
5 Refiners (Full) 0.084 19.69 0.923 65.1
4 Refiners 0.087 22.37 0.921 31.7
3 Refiners 0.092 24.51 0.915 20.2
2 Refiners 0.098 26.35 0.912 18.4
1 Refiners 0.109 28.73 0.897 17.5
0 Refiners 0.116 30.71 0.891 18.2

Table 5.3: Refinement Ablation Experiments – The table above shows the effect of our
guided refinement layers. Our full method uses 5 total refinement layers: two for the
coarsest depthmap resolution and one for each successive pyramid level. Each row
in the table corresponds to removing the finest resolution refinement layer from the
previous row. As can be seen, additional refinement layers improve depth estimation
performance at the cost of runtime.

to increase dramatically with translation noise above a standard deviation of 10 cm,

however. Unsurprisingly, our method is more sensitive to orientation errors. While

rotation noise with a standard deviation of 0.1 degrees can be handled gracefully,

noise with a standard deviation above 0.5 degrees leads to significant increases in

depth error.

One approach to add robustness to pose errors would be to refine the incoming

pose estimates internally such that the poses and depths are jointly optimized to

reduce the training loss. A separate refiner network could be envisioned that adds

a small residual to the camera poses to compensate for any errors. We leave the

investigation of this pose refinement network as future work.

5.3.7 Improvements

In addition to the impact of pose accuracy on depth estimation performance detailed

in the previous section, there are a number of ways in which our method could be

improved upon. First, the addition of a photometric consistency loss (similar to the

one used to train the coarse depth prediction network described in Chapter 4) could be

applied to augment the supervised training loss. Relying on fully labeled depthmaps

to infer the weights of the network limits the amount of data available for training.
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Figure 5-10: Pose Error Sensitivity – Our method assumes knowledge of the input
camera poses and is therefore sensitive to any errors in the pose estimates. To quantify
the effect, here we add Gaussian noise onto the true poses and plot the absolute
relative depth error and RMSE depth error as the standard deviation of the noise
increases. In the left column, we show the effect of translation noise, while in the
right column we show the effect of rotation noise.

However, photometric consistency could be used to provide a training signal when

groundtruth depths are incomplete (e.g., when LIDAR is used to label the training

data) or missing entirely (e.g., when off-the-shelf video is available but lacks depth

annotations). Second, we have observed that the choice of depth samples that define

our cost volume planes has a large impact on our final depthmap quality. Using a

poor set of depth samples relative to the true scene depths reduces the quality of

depth information at the coarsest image scales and therefore increases the burden on

the subsequent refinement layers to provide the correct depth information. It may be

possible, however, to learn a good set of depth samples directly from the reference

127



image (similar to the depth prediction techniques outlined in Section 2.5.3).

5.4 Conclusion

In this chapter we presented a learning-based method for MVS depth estimation

capable of recovering depth from images taken from known, but otherwise arbi-

trary, viewpoints. Our key insight is that by compensating for the known viewpoint

changes during feature extraction, our network can learn features that are projected

by construction. This technique lessens the burden on the network to learn invariant

features, thereby increasing robustness to viewpoint changes during matching. We

employ low-resolution techniques from Khamis et al. [108] and present a novel incre-

mental extraction network to perform this viewpoint compensation efficiently. We

show reconstruction performance on benchmark datasets comparable to the state-of-

the-art, while being significantly more efficient.
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Chapter 6

Conclusion

In this thesis, we have shown three innovations to the problems of monocular SLAM

and monocular depth estimation that bring full 3D understanding of the environment

viewed by a moving monocular camera one step closer to reality. Monocular SLAM

and monocular depth estimation are critical components in many emerging fields,

such as self-driving cars, autonomous drones, and augmented reality. The ability to

accurately and efficiently infer both the pose of a moving camera and a dense model

of the surrounding environment from the images alone is of fundamental importance

to realizing these new technologies. We have shown that the current state of the art

in monocular SLAM and depth estimation fall short of the requirements for these

applications, however, especially in terms of accuracy and computational efficiency

on low-SWaP platforms. We have argued in this thesis, however, that untapped

sources of prior information, along with targeted applications of machine learning,

may be used to address these shortcomings. Many approaches to monocular SLAM

and monocular depth estimation do not use all the information available to them to

produce solutions. By identifying and exploiting these facets of the two problems, we

are able to show improvements in accuracy and speed above the state of the art.

In Chapter 3 we showed how dense monocular depth estimation methods over-

sample scenes with points relative to the actual geometric complexity of surround-

ings. Even for moderate image resolutions, the number of samples in a given dense

depthmap number in the hundreds of thousands or even millions. This sampling
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density is fixed, no matter how simple the observed environment actually is, which

is a significant computational burden that simultaneously increases the likelihood

of noise and outliers corrupting the depths. Many environments of interest can be

well-described as piecewise planar, however, and each of these planes can be repre-

sented with only a small number of parameters when encoded using triangular meshes.

We exploited insight and developed and fast meshing algorithm that efficiently esti-

mates triangular meshes of the environment. By intelligently adapting the number of

mesh vertices to the observed scene, we are able to generate accurate reconstructions

with far fewer depths, drastically accelerating the depth estimation process. We also

showed that interpreting the triangular mesh as a graph allows us to apply sophisti-

cated spatial regularization techniques that would be intractable otherwise using only

a standard CPU.

In Chapter 4, we showed how metric scale is fundamentally unobservable in monoc-

ular SLAM when only the geometric content of the images is considered. Monocular

cameras are bearing sensors that only measure the direction of incoming light, not the

metric distance that the light traveled to the sensor. However, for monocular SLAM

solutions to be of any utility in robotics or augmented reality, the true metric scale

of the solution is required. Typically, approaches to sidestepping this issue usually

involve additional sensors and hardware, such as stereo cameras or inertial methods,

but these techniques can be brittle and difficult to implement and tune. We instead

reasoned that the semantic content of the incoming images could be used infer the

metric scale. To that end, we trained a small neural network that regresses depth

from monocular images. The metric scale of the depths is encoded in the network

weights after being trained on a large dataset of calibrated stereo imagery. We then

fuse the metric depths from this network with the unscaled poses produced from a

sparse monocular SLAM frontend to generate fully scaled solutions without additional

hardware, sensors, or compute.

Finally, in Chapter 5, we showed how dense monocular depth estimation relies

on robustly associating pixels across multiple views. The appearance of objects can

be altered significantly when viewed from different vantage points, however, under-
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going scale, rotation, and perspective transformations depending on the arrangement

of the input cameras. A popular approach to addressing this challenge is to learn

alternative representations of the imagery that can be more reliably associated. How-

ever, the current solutions for learned depth estimation do not fully take advantage

of the knowledge of the camera poses. Feature extraction in these networks is per-

formed on each image independently, without considering the relative poses of the

cameras. This means that the features learned must be invariant to scale, rotation,

and perspective changes, which is a challenging machine learning problem. Instead,

we reasoned that by compensating for the change in viewpoint between the reference

and the comparison images inside the feature extraction process itself, we would be

able to more reliably associate features and improve depth estimation quality across

different views. Performing this compensation naively, however, can be computa-

tionally expensive. We therefore developed a novel feature extraction network that

incrementally computes features that are viewpoint compensated, obviating the need

for many additional convolutional layers. We then paired this new feature network

with the fast refinement techniques proposed in StereoNet [108], but generalized to the

multi-view setting, for additional computational savings. The combination of these

two improvements allow for improved depth estimation accuracy and completeness,

while being significantly faster that the state of the art.

We believe the techniques presented in this thesis move monocular SLAM and

monocular depth estimation one step closer to being fully usable in the wild. Identi-

fying and appropriately leveraging prior information about these perception problems

can realize meaningful advances in the field. Before concluding, we will briefly discuss

some additional areas of future work that could build on top of the ideas presented

in the preceding chapters.

6.1 Future Work: Learning Mesh Vertices

The vertices in the meshing approach described in Chapter 3 are selected based on

the gradient magnitude and direction at a particular pixel. The image is first divided
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into grid cells and the pixel in each grid cell with the strongest trackability score is

selected for depth estimation. When the inverse depth variance for that pixel drops

below a threshold, the pixel is added as a vertex into the mesh. The size of the

grid cells is controlled by a user-defined parameter. In our experiments, we found

reasonable settings for this parameter that balance reconstruction detail with speed.

However, more can be done to intelligently select the mesh vertices.

For instance, note that the pixels considered for potential mesh vertices are those

that lie in regions of the image with high gradient. These pixels may or may not

correspond to regions of the observed surface that require an additional vertex to

improve reconstruction accuracy. Rather than considering pixels that only have high

image gradient, we would ideally want to consider pixels with high image gradient

that also have a high likelihood of corresponding to points on the 3D surface with

high curvature (or surface gradient) such as corners and depth discontinuities. If we

were able to select only these pixels for mesh vertices, we would be able to reduce

the number of depths that need to be estimated even further without affecting recon-

struction accuracy. Predicting which pixels in the image may correspond to points

with high surface gradient may be a promising application of deep learning. Training

data with labels for high surface gradient pixels would be required, which may limit

the number of applicable datasets, but simulated imagery may be viable alternative,

especially if access to the underlying meshes of the simulated environment could be

obtained.

6.2 Future Work: Learning Scale without Depth

The metric monocular SLAM method outlined in Chapter 4 relies on a small neural

network to regress metric depth from low-resolution images. These metric depth

measurements are then fused with unscaled poses from a sparse monocular SLAM

pipeline to generic a fully metric solution. One of the benefits of this approach is that

its use of machine learning is targeted – it does not ignore the epipolar constraints

observable in the input data and only exploits prior information for the unobservable
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scale. An even more targeted strategy would be to regress a metric scale value directly

from pairs of images without going through an intermediate depth layer.

Learning the metric scale of the motion between two images – as opposed to the

metric depth from a single image – should be possible. The network would need to

take as input two images and perhaps their relative pose estimated from the unscaled

monocular SLAM pipeline and output a single number representing the metric scale

of the translation between the images. The network could then be queried with pairs

of keyframes from the monocular SLAM graph in the same way that loop closure

candidates are verified. Once a scale estimate is produced, a factor linking these

keyframes could be inserted into the graph, constraining the scale of the solution to

the true metric scale. How to construct this network is unclear, however. Given the

presence of the images, some form of CNN would probably be most appropriate, but

the question of how many layers, how many feature channels, how many residual

connections, whether any fully connected layers should be used, etc. would need to

be investigated.

6.3 Future Work: Learning Depth Online

The learned depth estimation approach presented in Chapter 5 is trained using input

images with known poses and groundtruth depth labels. While datasets do exist that

satisfy these requirements, generating pose and depth labels can be an expensive

and time consuming process, usually requiring additional sensors such as GPS, active

motion capture systems, or LIDAR. Reducing the amount of labeled data required

would open up a far larger and more varied set of training data to improve depth

estimation quality.

Recent advances in self-supervised depth estimation, however, could allow for our

MultiViewStereoNet approach to be trained without depth labels. Rather than min-

imizing a supervised training loss, the depthmap estimated by the network could be

used to warp the reference image into the comparison image frame. The photometric

error between warped reference image and the comparison image would provide a
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self-supervised training signal to infer the network weights. Furthermore, if a sepa-

rate sparse monocular SLAM process were used to generate poses, this self-supervised

training procedure could be run entirely online, allowing the network to adapt grace-

fully to new environments. This type of “online adaption” of neural networks is an

emerging field that may allow deep neural networks to mitigate the issue of gener-

alizing beyond their training sets. Determining how best to optimize the network

online, however, is an open problem that would require serious investigation. Should

a standard stochastic gradient descent step be applied for every new image or should

certain criteria be met to trigger the adaption? Should all the weights in the network

be updated or only a subset? How do we prevent the network from “forgetting” the

training data it has seen previously? These questions — and many more — would

need to be explored for a compelling solution.

This potential research direction, along with the others listed in this chapter,

may hopefully prove to be fertile ground for future work that build upon the ideas

discussed in this thesis. As more and more thought is invested in the monocular

SLAM and monocular depth estimation problems, our hope is that more sources of

untapped prior information are identified to further develop and advance the field.

134



Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems,
2015. Software available from tensorflow.org.

[2] Evan Ackerman. Skydio’s Camera Drone Finally Delivers on Autonomous
Flying Promises. http://spectrum.ieee.org/automaton/robotics/drones/
skydio-camera-drone-autonomous-flying. Accessed: 2016-08-04.

[3] Sameer Agarwal and Keir Mierle. Ceres Solver: Tutorial & Reference. Google
Inc, 2012.

[4] Sameer Agarwal, Noah Snavely, Ian Simon, Steven M Seitz, and Richard
Szeliski. Building Rome in a Day. In Proc. ICCV, 2009.

[5] H Alvarez, Lina María Paz, J Sturm, and D Cremers. Collision Avoidance
for Quadrotors with a Monocular Camera. In Experimental Robotics. Springer,
2016.

[6] Padmanabhan Anandan. A Computational Framework and an Algorithm for
the Measurement of Visual Motion. IJCV, 1989.

[7] Kelsey D. Atherton. NASA is Testing a Drone for Mars. http://www.popsci.
com/nasa-has-mars-plane-concept. Accessed: 2016-08-04.

[8] Alireza Bab-Hadiashar and David Suter. Robust Optic Flow Computation.
IJCV, 1998.

[9] Tim Bailey and Hugh Durrant-Whyte. Simultaneous Localization and Mapping:
Part II. IEEE Robotics & Automation Magazine, 2006.

[10] Henry Harlyn Baker. Depth from Edge and Intensity Based Stereo. Technical
report, DTIC Document, 1982.

135

http://spectrum.ieee.org/automaton/robotics/drones/skydio-camera-drone-autonomous-flying
http://spectrum.ieee.org/automaton/robotics/drones/skydio-camera-drone-autonomous-flying
http://www.popsci.com/nasa-has-mars-plane-concept
http://www.popsci.com/nasa-has-mars-plane-concept


[11] Simon Baker and Iain Matthews. Lucas-Kanade 20 Years On: A Unifying
Framework. IJCV, 2004.

[12] Jonathan T Barron. A General and Adaptive Robust Loss Function. In Proc.
CVPR, 2019.

[13] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up
robust features (SURF). Comp. Vis. and Image Understanding, 2008.

[14] Peter N Belhumeur. A Bayesian Approach to Binocular Steropsis. IJCV, 1996.

[15] Peter N Belhumeur and David Mumford. A Bayesian Treatment of the Stereo
Correspondence Problem using Half-Occluded Regions. In Proc. CVPR, 1992.

[16] James R Bergen, Patrick Anandan, Keith J Hanna, and Rajesh Hingorani.
Hierarchical Model-based Motion Estimation. In Proc. ECCV, 1992.

[17] Michael J Black and Paul Anandan. The Robust Estimation of Multiple Mo-
tions: Parametric and Piecewise-Smooth Flow Fields. Computer Vision and
Image Understanding, 1996.

[18] Michael J Black and Anand Rangarajan. On the Unification of Line Processes,
Outlier Rejection, and Robust Statistics with Applications in Early Vision.
IJCV, 1996.

[19] Michael Bleyer, Christoph Rhemann, and Carsten Rother. PatchMatch Stereo-
Stereo Matching with Slanted Support Windows. In Proc. BMVC, 2011.

[20] Michael Bloesch, Jan Czarnowski, Ronald Clark, Stefan Leutenegger, and An-
drew J Davison. CodeSLAM – learning a compact, optimisable representation
for dense visual SLAM. In Proc. CVPR, 2018.

[21] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast Approximate Energy Min-
imization via Graph Cuts. Trans. PAMI, 2001.

[22] Kristian Bredies, Karl Kunisch, and Thomas Pock. Total Generalized Variation.
Journal on Imaging Sciences, 2010.

[23] Adrian Broadhurst, Tom W Drummond, and Roberto Cipolla. A Probabilistic
Framework for Space Carving. In Proc. ICCV, 2001.

[24] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Joern Rehder,
Sammy Omari, Markus W Achtelik, and Roland Siegwart. The EuRoC Micro
Aerial Vehicle Datasets. IJRR, 2016.

[25] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza,
José Neira, Ian Reid, and John J Leonard. Past, Present, and Future of Simul-
taneous Localization and Mapping: Toward the Robust-Perception Age. Trans.
on Robotics, 2016.

136



[26] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. BRIEF:
Binary Robust Independent Elementary Features. In Proc. ECCV, 2010.

[27] Luca Carlone. A Convergence Analysis for Pose Graph Optimization via Gauss-
Newton Methods. In Proc. ICRA, 2013.

[28] Luca Carlone and Frank Dellaert. Duality-based Verification Techniques for 2D
SLAM. In Proc. ICRA, 2015.

[29] Luca Carlone, David M Rosen, Giuseppe Calafiore, John J Leonard, and Frank
Dellaert. Lagrangian Duality in 3D SLAM: Verification Techniques and Optimal
Solutions. In Proc. IROS, 2015.

[30] Antonin Chambolle, Vicent Caselles, Daniel Cremers, Matteo Novaga, and
Thomas Pock. An Introduction to Total Variation for Image Analysis. Theo-
retical foundations and numerical methods for sparse recovery, 2010.

[31] Antonin Chambolle and Thomas Pock. A First-Order Primal-Dual Algorithm
for Convex Problems with Applications to Imaging. Journal of Mathematical
Imaging and Vision, 2011.

[32] Alessandro Chiuso, Paolo Favaro, Hailin Jin, and Stefano Soatto. MFm: 3-D
Motion From 2-D Motion Causally Integrated Over Time-Part II: Implementa-
tion. In Proc. ECCV, 2000.

[33] Javier Civera, Andrew J Davison, and JM Martinez Montiel. Inverse Depth
Parametrization for Monocular SLAM. Trans. on Robotics, 2008.

[34] Ronald Clark, Sen Wang, Hongkai Wen, Andrew Markham, and Niki Trigoni.
VINet: Visual-Inertial Odometry as a Sequence-to-Sequence Learning Problem.
In AAAI, 2017.

[35] Robert T Collins. A Space-Sweep Approach to True Multi-Image Matching. In
Proc. CVPR, 1996.

[36] W Bruce Culbertson, Thomas Malzbender, and Greg Slabaugh. Generalized
Voxel Coloring. In International Workshop on Vision Algorithms, 1999.

[37] Brian Curless and Marc Levoy. A Volumetric Method for Building Complex
Models from Range Images. In Proc. on Computer Graphics and Interactive
Techniques, 1996.

[38] Jan Czarnowski, Tristan Laidlow, Ronald Clark, and Andrew J Davison. Deep-
Factors: Real-time probabilistic dense monocular SLAM. IEEE Robotics and
Automation Letters, 2020.

[39] Shreyansh Daftry, Sam Zeng, Arbaaz Khan, Debadeepta Dey, Narek Melik-
Barkhudarov, J Andrew Bagnell, and Martial Hebert. Robust Monocular Flight
in Cluttered Outdoor Environments. arXiv:1604.04779, 2016.

137



[40] Navneet Dalal and Bill Triggs. Histograms of Oriented Gradients for Human
Detection. In Proc. CVPR. IEEE, 2005.

[41] Andrew J Davison. Real-Time Simultaneous Localisation and Mapping with a
Single Camera. In Proc. ICCV, 2003.

[42] Andrew J Davison. FutureMapping: The Computational Structure of Spatial
AI Systems. arXiv preprint arXiv:1803.11288, 2018.

[43] Frank Dellaert, Dieter Fox, Wolfram Burgard, and Sebastian Thrun. Monte
Carlo Localization for Mobile Robots. In Proc. ICRA, 1999.

[44] Frank Dellaert and Michael Kaess. Square Root SAM: Simultaneous Localiza-
tion and Mapping via Square Root Information Smoothing. IJRR, 2006.

[45] Frank Dellaert, Steven M Seitz, Charles E. Thorpe, and Sebastian Thrun. Struc-
ture from Motion without Correspondence. In Proc. CVPR, 2000.

[46] Steve Dent. FEDs Give Google OK to Test Project Wing
Drone Deliveries. https://www.engadget.com/2016/08/02/
feds-give-google-ok-to-test-project-wing-drone-deliveries. Ac-
cessed: 2016-08-11.

[47] M. W. M. Gamini Dissanayake, Paul Newman, Steve Clark, Hugh F Durrant-
Whyte, and Michael Csorba. A Solution to the Simultaneous Localization and
Map Building (SLAM) Problem. IEEE Transactions on Robotics and Automa-
tion, 2001.

[48] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach,
Subhashini Venugopalan, Kate Saenko, and Trevor Darrell. Long-Term Recur-
rent Convolutional Networks for Visual Recognition and Description. In Proc.
CVPR, 2015.

[49] Arnaud Doucet, Nando De Freitas, and Neil Gordon. An Introduction to Se-
quential Monte Carlo Methods. In Sequential Monte Carlo Methods in Practice.
IEEE, 2001.

[50] Hugh Durrant-Whyte and Tim Bailey. Simultaneous Localization and Mapping:
Part I. IEEE Robotics & Automation Magazine, 2006.

[51] Ethan Eade and Tom Drummond. Edge Landmarks in Monocular SLAM. In
Proc. BMVC, 2006.

[52] Ethan Eade and Tom Drummond. Scalable Monocular SLAM. In Proc. CVPR,
2006.

[53] Ethan Eade and Tom Drummond. Monocular SLAM as a Graph of Coalesced
Observations. In Proc. ICCV, 2007.

138

https://www.engadget.com/2016/08/02/feds-give-google-ok-to-test-project-wing-drone-deliveries
https://www.engadget.com/2016/08/02/feds-give-google-ok-to-test-project-wing-drone-deliveries


[54] David Eigen, Christian Puhrsch, and Rob Fergus. Depth Map Prediction from
a Single Image using a Multi-Scale Deep Network. In NeurIPS, 2014.

[55] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct Sparse Odometry.
Trans. PAMI, 2017.

[56] Jakob Engel, Thomas Schöps, and Daniel Cremers. LSD-SLAM: Large-Scale
Direct Monocular SLAM. Proc. ECCV, 2014.

[57] Jakob Engel, Jürgen Sturm, and Daniel Cremers. Camera-Based Navigation of
a Low-Cost Quadrocopter. In Proc. IROS, 2012.

[58] Jakob Engel, Jurgen Sturm, and Daniel Cremers. Semi-Dense Visual Odometry
for a Monocular Camera. In Proc. ICCV, 2013.

[59] Ernie Esser, Xiaoqun Zhang, and Tony F Chan. A General Framework for
a Class of First Order Primal-Dual Algorithms for Convex Optimization in
Imaging Science. Journal on Imaging Sciences, 2010.

[60] Ryan M Eustice, Hanumant Singh, and John J Leonard. Exactly Sparse
Delayed-State Filters. In Proc. ICRA, 2005.

[61] Ryan M Eustice, Hanumant Singh, and John J Leonard. Exactly Sparse
Delayed-State Filters for View-Based SLAM. Trans. on Robotics, 2006.

[62] Olivier Faugeras and Renaud Keriven. Variational Principles, Surface Evolu-
tion, PDE’s, Level Set Methods and the Stereo Problem. IEEE, 2002.

[63] Martin A Fischler and Robert C Bolles. Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and Auto-
mated Cartography. Communications of the ACM, 1981.

[64] Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza. IMU
Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori
Estimation. In Proc. RSS, 2015.

[65] Christian Forster, Matia Pizzoli, and Davide Scaramuzza. SVO: Fast Semi-
Direct Monocular Visual Odometry. In Proc. ICRA, 2014.

[66] Dieter Fox, Wolfram Burgard, Frank Dellaert, and Sebastian Thrun. Monte
Carlo Localization: Efficient Position Estimation for Mobile Robots. In Proc.
AAAI, 1999.

[67] Pascal Fua and Yvan G Leclerc. Object-Centered Surface Reconstruction: Com-
bining Multi-Image Stereo and Shading. IJCV, 1995.

[68] Yasutaka Furukawa and Jean Ponce. Accurate, Dense, and Robust Multiview
Stereopsis. Trans. PAMI, 2010.

139



[69] Dorian Gálvez-López, Marta Salas, Juan D Tardós, and JMM Montiel. Real-
Time Monocular Object SLAM. Robotics and Autonomous Systems, 2016.

[70] Ravi Garg, Vijay Kumar Bg, Gustavo Carneiro, and Ian Reid. Unsupervised
CNN for Single View Depth Estimation: Geometry to the Rescue. In Proc.
ECCV, 2016.

[71] Pau Gargallo and Peter Sturm. Bayesian 3D modeling from images using mul-
tiple depth maps. In Proc. CVPR, 2005.

[72] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for Au-
tonomous Driving? The KITTI Vision Benchmark Suite. In Proc. CVPR,
2012.

[73] Davi Geiger, Bruce Ladendorf, and Alan Yuille. Occlusions and Binocular
Stereo. IJCV, 1995.

[74] Stuart Geman and Donald Geman. Stochastic Relaxation, Gibbs distributions,
and the Bayesian Restoration of Images. Trans. PAMI, 1984.

[75] Clément Godard, Oisin Mac Aodha, and Gabriel J. Brostow. Unsupervised
Monocular Depth Estimation with Left-Right Consistency. In Proc. CVPR,
2017.

[76] Clément Godard, Oisin Mac Aodha, Michael Firman, and Gabriel J Brostow.
Digging into Self-Supervised Monocular Depth Estimation. In Proc. ICCV,
2019.

[77] Michael Goesele, Brian Curless, and Steven M Seitz. Multi-View Stereo Revis-
ited. In Proc. CVPR, 2006.

[78] Gottfried Graber, Thomas Pock, and Horst Bischof. Online 3D Reconstruction
using Convex Optimization. In Proc. ICCV Workshops, 2011.

[79] W Nicholas Greene. Real-time Dense Simultaneous Localization and Mapping
using Monocular Cameras. Master’s thesis, Massachusetts Institute of Technol-
ogy, 2016.

[80] W. Nicholas Greene, Kyel Ok, Peter Lommel, and Nicholas Roy. Multi-Level
Mapping: Real-time Dense Monocular SLAM. In Proc. ICRA, 2016.

[81] W. Nicholas Greene and Nicholas Roy. FLaME: Fast Lightweight Mesh Es-
timation using Variational Smoothing on Delaunay Graphs. In Proc. ICCV,
2017.

[82] W Nicholas Greene and Nicholas Roy. Metrically-Scaled Monocular SLAM
using Learned Scale Factors. In Proc. ICRA, 2020.

140



[83] W Nicholas Greene and Nicholas Roy. MultiViewStereoNet: Fast Multi-View
Stereo Depth Estimation using Incremental Viewpoint-Compensated Feature
Extraction. In Proc. ICRA, 2021.

[84] Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raventos, and Adrien
Gaidon. 3D Packing for Self-Supervised Monocular Depth Estimation. In Proc.
CVPR, 2020.

[85] Anthony Ha. Daily Crunch: Facebook unveils the Oculus Quest 2. https:
//techcrunch.com/2020/09/16/daily-crunch-oculus-quest.

[86] Frank R Hampel, Elvezio M Ronchetti, Peter J Rousseeuw, and Werner A
Stahel. Robust Statistics: The Approach Based on Influence Functions. John
Wiley & Sons, 2011.

[87] Chris Harris and Mike Stephens. A Combined Corner and Edge Detector. In
Alvey Vision Conference, 1988.

[88] Christopher G Harris and JM Pike. 3D Positional Integration from Image
Sequences. Image and Vision Computing, 1988.

[89] Richard Hartley and Andrew Zisserman. Multiple View Geometry. Cambridge
University Press, 2003.

[90] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. In Proc. CVPR, 2016.

[91] Vu Hoang Hiep, Renaud Keriven, Patrick Labatut, and Jean-Philippe Pons.
Towards High-Resolution Large-Scale Multi-View Stereo. In Proc. CVPR, 2009.

[92] Heiko Hirschmuller. Stereo Processing by Semi-Global Matching and Mutual
Information. Trans. PAMI, 2007.

[93] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural
computation, 1997.

[94] Russell Hotten. Carmakers Face Challenge from Google and Apple. https:
//www.bbc.com/news/business-31720645.

[95] Po-Han Huang, Kevin Matzen, Johannes Kopf, Narendra Ahuja, and Jia-Bin
Huang. DeepMVS: Learning Multi-View Stereopsis. In Proc. CVPR, 2018.

[96] Sunghoon Im, Hae-Gon Jeon, Stephen Lin, and In So Kweon. DPSNet: End-
to-end Deep Plane Sweep Stereo. In Proc. ICLR, 2019.

[97] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. arXiv preprint
arXiv:1502.03167, 2015.

141

https://techcrunch.com/2020/09/16/daily-crunch-oculus-quest
https://techcrunch.com/2020/09/16/daily-crunch-oculus-quest
https://www.bbc.com/news/business-31720645
https://www.bbc.com/news/business-31720645


[98] Hiroshi Ishikawa and Davi Geiger. Occlusions, Discontinuities, and Epipolar
Lines in Stereo. In Proc. ECCV, 1998.

[99] Ganesh Iyer, J Krishna Murthy, Gunshi Gupta, Madhava Krishna, and Liam
Paull. Geometric Consistency for Self-Supervised End-to-End Visual Odometry.
In Proc. CVPR Workshops, 2018.

[100] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial Transformer
Networks. In NeurIPS, 2015.

[101] Simon J Julier and Jeffrey K Uhlmann. A Counter Example to the Theory of
Simultaneous Localization and Map Building. In Proc. ICRA. IEEE, 2001.

[102] Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela Ila, John J
Leonard, and Frank Dellaert. iSAM2: Incremental smoothing and mapping
using the Bayes tree. IJRR, 2011.

[103] Michael Kaess, Ananth Ranganathan, and Frank Dellaert. iSAM: Incremental
Smoothing and Mapping. Trans. on Robotics, 2008.

[104] Rudolph E Kalman and Richard S Bucy. New Results in Linear Filtering and
Prediction Theory. 1961.

[105] Rudolph Emil Kalman. A New Approach to Linear Filtering and Prediction
Problems. 1960.

[106] Sing Bing Kang, Richard Szeliski, and Jinxiang Chai. Handling Occlusions in
Dense Multi-View Stereo. In Proc. CVPR, 2001.

[107] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter Henry, Ryan
Kennedy, Abraham Bachrach, and Adam Bry. End-to-End Learning of Ge-
ometry and Context for Deep Stereo Regression. In Proc. ICCV, 2017.

[108] Sameh Khamis, Sean Fanello, Christoph Rhemann, Adarsh Kowdle, Julien
Valentin, and Shahram Izadi. StereoNet: Guided Hierarchical Refinement for
Real-Time Edge-Aware Depth Prediction. In Proc. ECCV, 2018.

[109] Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimiza-
tion. arXiv:1412.6980, 2014.

[110] Georg Klein and David Murray. Parallel Tracking and Mapping for Small AR
Workspaces. In Proc. ISMAR, 2007.

[111] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles
and Techniques. MIT Press, 2009.

[112] Vladimir Kolmogorov and Ramin Zabih. Computing Visual Correspondence
with Occlusions using Graph Cuts. In Proc. ICCV, 2001.

142



[113] Kurt Konolige and Willow Garage. Sparse Sparse Bundle Adjustment. In Proc.
BMVC, 2010.

[114] Kurt Konolige, Giorgio Grisetti, Rainer Kümmerle, Wolfram Burgard, Ben-
son Limketkai, and Regis Vincent. Efficient Sparse Pose Adjustment for 2D
Mapping. In Proc. IROS, 2010.

[115] Kirsten Korosec. Uber’s Self-Driving Unit Starts Mapping Washing-
ton, D.C. Ahead of Testing. https://techcrunch.com/2020/01/23/
ubers-self-driving-unit-starts-mapping-washington-d-c-ahead-of-testing.

[116] Frank R. Kschischang, Brendan J. Frey, and H.-A. Loeliger. Factor Graphs and
the Sum-Product Algorithm. IEEE Transactions on Information Theory, 2001.

[117] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wol-
fram Burgard. g2o: A General Framework for Graph Optimization. In Proc.
ICRA, 2011.

[118] Kiriakos N Kutulakos and Steven M Seitz. A Theory of Shape by Space Carving.
IJCV, 2000.

[119] Elizabeth Landau. Helicopter Could Be ’Scout’ for Mars Rovers. http://www.
jpl.nasa.gov/news/news.php?feature=4457.

[120] Jennifer Langston. To the moon and beyond: How HoloLens 2 is help-
ing build NASAâĂŹs Orion spacecraft. https://news.microsoft.com/
innovation-stories/hololens-2-nasa-orion-artemis.

[121] Frederic Lardinois. Google Maps gets improved Live
View AR directions. https://techcrunch.com/2020/10/01/
google-maps-gets-improved-live-view-ar-directions.

[122] John J Leonard and Hugh F Durrant-Whyte. Mobile Robot Localization by
Tracking Geometric Beacons. IEEE Transactions on Robotics and Automation,
1991.

[123] John J Leonard and Hugh F Durrant-Whyte. Simultaneous Map Building and
Localization for an Autonomous Mobile Robot. In Proc. IROS, 1991.

[124] Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart, and Paul
Furgale. Keyframe-Based Visual-Inertial Odometry using Nonlinear Optimiza-
tion. IJRR, 2015.

[125] Guoying Li. Robust Regression. Exploring data tables, trends, and shapes, 1985.

[126] Ruihao Li, Sen Wang, Zhiqiang Long, and Dongbing Gu. UnDeepVO: Monoc-
ular Visual Odometry through Unsupervised Deep Learning. In Proc. ICRA,
2018.

143

https://techcrunch.com/2020/01/23/ubers-self-driving-unit-starts-mapping-washington-d-c-ahead-of-testing
https://techcrunch.com/2020/01/23/ubers-self-driving-unit-starts-mapping-washington-d-c-ahead-of-testing
http://www.jpl.nasa.gov/news/news.php?feature=4457
http://www.jpl.nasa.gov/news/news.php?feature=4457
https://news.microsoft.com/innovation-stories/hololens-2-nasa-orion-artemis
https://news.microsoft.com/innovation-stories/hololens-2-nasa-orion-artemis
https://techcrunch.com/2020/10/01/google-maps-gets-improved-live-view-ar-directions
https://techcrunch.com/2020/10/01/google-maps-gets-improved-live-view-ar-directions


[127] Fayao Liu, Chunhua Shen, Guosheng Lin, and Ian Reid. Learning Depth
from Single Monocular Images using Deep Convolutional Neural Fields. Trans.
PAMI, 2015.

[128] H Christopher Longuet-Higgins. A Computer Algorithm for Reconstructing a
Scene from Two Projections. Nature, 1981.

[129] Manolis I. A. Lourakis and Antonis A. Argyros. SBA: A Software Package for
Generic Sparse Bundle Adjustment. Transactions on Mathematical Software
(TOMS), 2009.

[130] David G Lowe. Object Recognition from Local Scale-Invariant Features. In
Proc. ICCV, 1999.

[131] Hokuyo Automatic Co. LTD. Hokuyo UTM-30LX. https://www.hokuyo-aut.
jp/02sensor/07scanner/utm_30lx.html. Accessed: 2016.07.20.

[132] Feng Lu and Evangelos Milios. Globally Consistent Range Scan Alignment for
Environment Mapping. Autonomous Robots, 1997.

[133] Bruce D Lucas, Takeo Kanade, et al. An Iterative Image Registration Technique
with an Application to Stereo Vision. In IJCAI, 1981.

[134] Farhad Manjoo. Think Amazon’s Drone Delivery Idea is a Gimmick?
Think Again. http://www.nytimes.com/2016/08/11/technology/
think-amazons-drone-delivery-idea-is-a-gimmick-think-again.html.
Accessed: 2016-08-11.

[135] Donald W Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear
Parameters. Journal of the Society for Industrial and Applied Mathematics,
1963.

[136] Larry Matthies and STEVENA Shafer. Error Modeling in Stereo Navigation.
Journal on Robotics and Automation, 1987.

[137] Larry Henry Matthies. Dynamic Stereo Vision. Technical report, Carnegie
Mellon University, 1989.

[138] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers,
Alexey Dosovitskiy, and Thomas Brox. A Large Dataset to Train Convolutional
Networks for Disparity, Optical Flow, and Scene Flow Estimation. In Proc.
CVPR, 2016.

[139] Microsoft. Kinect for Windows Sensor Components and Specifications.
https://msdn.microsoft.com/en-us/library/jj131033.aspx. Accessed:
2016.07.20.

[140] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Wegbreit. Fast-
SLAM: A Factored Solution to the Simultaneous Localization and Mapping
Problem. In Proc. AAAI, 2002.

144

https://www.hokuyo-aut.jp/02sensor/07scanner/utm_30lx.html
https://www.hokuyo-aut.jp/02sensor/07scanner/utm_30lx.html
http://www.nytimes.com/2016/08/11/technology/think-amazons-drone-delivery-idea-is-a-gimmick-think-again.html
http://www.nytimes.com/2016/08/11/technology/think-amazons-drone-delivery-idea-is-a-gimmick-think-again.html
https://msdn.microsoft.com/en-us/library/jj131033.aspx


[141] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Wegbreit. Fast-
SLAM 2.0 : An Improved Particle Filtering Algorithm for Simultaneous Local-
ization and Mapping that Provably Converges. In Proc. IJCAI, 2003.

[142] Hans P Moravec. Obstacle Avoidance and Navigation in the Real World by a
Seeing Robot Rover. Technical report, Stanford University, 1980.

[143] Anastasios I. Mourikis and Stergios I. Roumeliotis. A Multi-State Constraint
Kalman Filter for Vision-aided Inertial Navigation. In Proc. ICRA, 2007.

[144] David Mumford and Jayant Shah. Optimal Approximations by Piecewise
Smooth Functions and Associated Variational Problems. Communications on
Pure and Applied Mathematics, 1989.

[145] Raul Mur-Artal, J. M. M. Montiel, and Juan D. Tardos. ORB-SLAM: a Versa-
tile and Accurate Monocular SLAM System. Trans. on Robotics, 2015.

[146] Raúl Mur-Artal and Juan D Tardós. Probabilistic Semi-Dense Mapping from
Highly Accurate Feature-Based Monocular SLAM. In Proc. RSS, 2015.

[147] Raúl Mur-Artal and Juan D. Tardós. ORB-SLAM2: an Open-Source SLAM
System for Monocular, Stereo and RGB-D Cameras. Trans. on Robotics, 2017.

[148] Rafael MuÃśoz-Salinas and Rafael Medina-Carnicer. UcoSLAM: Simultaneous
Localization and Mapping by Fusion of KeyPoints and Squared Planar Markers.
Pattern Recognition, 2020.

[149] Vinod Nair and Geoffrey E Hinton. Rectified Linear Units Improve Restricted
Boltzmann Machines. In Proc. ICML, 2010.

[150] Keith Naughton. Google’s Driverless-Car Czar on Taking the Hu-
man Out of the Equation. http://www.bloomberg.com/features/
2016-john-krafcik-interview-issue. Accessed: 2016-08-11.

[151] Yu Nesterov. Smooth Minimization of Non-smooth Functions. Mathematical
Programming, 2005.

[152] Richard A Newcombe and Andrew J Davison. Live Dense Reconstruction with
a Single Moving Camera. In Proc. CVPR, 2010.

[153] Richard A. Newcombe, Steven J. Lovegrove, and Andrew J. Davison. DTAM:
Dense Tracking and Mapping in Real-Time. In Proc. ICCV, 2011.

[154] David Nistér. An Efficient Solution to the Five-Point Relative Pose Problem.
Trans. PAMI, 2004.

[155] David Nistér, Oleg Naroditsky, and James Bergen. Visual Odometry. In Proc.
CVPR, 2004.

145

http://www.bloomberg.com/features/2016-john-krafcik-interview-issue
http://www.bloomberg.com/features/2016-john-krafcik-interview-issue


[156] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer Science
& Business Media, 2006.

[157] Yuichi Ohta and Takeo Kanade. Stereo by Intra-and Inter-Scanline Search using
Dynamic Programming. Trans. PAMI, 1985.

[158] Kyel Ok, Dinesh Gamage, Tom Drummond, Frank Dellaert, and Nicholas Roy.
Monocular Image Space Tracking on a Computationally Limited MAV. In Proc.
ICRA, 2015.

[159] Peter Ondruska, Pushmeet Kohli, and Shahram Izadi. MobileFusion: Real-time
Volumetric Surface Reconstruction and Dense Tracking On Mobile Phones. In
Trans. on Visualization and Computer Graphics, 2015.

[160] Ee Ping Ong and Michael Spann. Robust Optical Flow Computation based on
Least-Median-of-Squares Regression. IJCV, 1999.

[161] Neal Parikh and Stephen Boyd. Proximal Algorithms. Foundations and Trends
in Optimization, 2014.

[162] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In NeurIPS, 2019.

[163] Valentin Peretroukhin and Jonathan Kelly. DPC-Net: Deep Pose Correction
for Visual Localization. IEEE Robotics and Automation Letters, 2018.

[164] Sudeep Pillai, Rareş Ambruş, and Adrien Gaidon. SuperDepth: Self-Supervised,
Super-Resolved Monocular Depth Estimation. In Proc. ICRA, 2019.

[165] Sudeep Pillai, Srikumar Ramalingam, and John J. Leonard. High-Performance
and Tunable Stereo Reconstruction. In Proc. ICRA, 2016.

[166] Pedro Piniés, Lina Maria Paz, and Paul Newman. Dense Mono Reconstruction:
Living with the Pain of the Plain Plane. In Proc. ICRA, 2015.

[167] Matia Pizzoli, Christian Forster, and Davide Scaramuzza. REMODE: Proba-
bilistic, Monocular Dense Reconstruction in Real Time. In Proc. ICRA, 2014.

[168] Thomas Pock, Daniel Cremers, Horst Bischof, and Antonin Chambolle. An
Algorithm for Minimizing the Mumford-Shah functional. In Proc. ICCV, 2009.

[169] Matteo Poggi, Filippo Aleotti, Fabio Tosi, and Stefano Mattoccia. Towards
Real-Time Unsupervised Monocular Depth Estimation on CPU. In Proc. IROS,
2018.

146



[170] PointGrey. Bumblebee2 1394a. https://www.ptgrey.com/
bumblebee2-firewire-stereo-vision-camera-systems. Accessed:
2016.07.20.

[171] PointGrey. Firefly MV. https://www.ptgrey.com/
firefly-mv-usb2-cameras. Accessed: 2016.07.20.

[172] Vivek Pradeep, Christoph Rhemann, Shahram Izadi, Christopher Zach, Michael
Bleyer, and Steven Bathiche. MonoFusion: Real-Time 3D Reconstruction of
Small Scenes with a Single Web Camera. In Proc. ISMAR, 2013.

[173] Tong Qin, Peiliang Li, and Shaojie Shen. VINS-Mono: A Robust and Versatile
Monocular Visual-Inertial State Estimator. Trans. On Robotics, 2018.

[174] René Ranftl, Kristian Bredies, and Thomas Pock. Non-local Total Generalized
Variation for Optical Flow Estimation. In Proc. ECCV, 2014.

[175] David M Rosen, Luca Carlone, Afonso S Bandeira, and John J Leonard. SE-
Sync: A Certifiably Correct Algorithm for Synchronization over the Special
Euclidean Group. IJRR, 2019.

[176] David M Rosen, Charles DuHadway, and John J Leonard. A Convex Relax-
ation for Approximate Global Optimization in Simultaneous Localization and
Mapping. In Proc. ICRA, 2015.

[177] David M Rosen, Michael Kaess, and John J Leonard. RISE: An Incremen-
tal Trust-Region Method for Robust Online Sparse Least-Squares Estimation.
Trans. on Robotics, 2014.

[178] Antoni Rosinol, Marcus Abate, Yun Chang, and Luca Carlone. Kimera: An
Open-Source Library for Real-Time Metric-Semantic Localization and Map-
ping. In Proc. ICRA, 2020.

[179] Antoni Rosinol, Torsten Sattler, Marc Pollefeys, and Luca Carlone. Incremen-
tal Visual-Inertial 3D Mesh Generation with Structural Regularities. In Proc.
ICRA, 2019.

[180] Edward Rosten and Tom Drummond. Machine Learning for High-Speed Corner
Detection. In Proc. ECCV, 2006.

[181] Sébastien Roy and Ingemar J Cox. A Maximum-Flow Formulation of the N-
Camera Stereo Correspondence Problem. In Proc. ICCV, 1998.

[182] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. ORB: An
Efficient Alternative to SIFT or SURF. In Proc. ICCV, 2011.

[183] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear Total Variation
Based Noise Removal Algorithms. Physica D: Nonlinear Phenomena, 1992.

147

https://www.ptgrey.com/bumblebee2-firewire-stereo-vision-camera-systems
https://www.ptgrey.com/bumblebee2-firewire-stereo-vision-camera-systems
https://www.ptgrey.com/firefly-mv-usb2-cameras
https://www.ptgrey.com/firefly-mv-usb2-cameras


[184] Anshel Sag. How VR And AR Could Be A So-
lution To Coronavirus Cancellations For Conferences.
https://www.forbes.com/sites/moorinsights/2020/03/02/
how-vr-and-ar-could-be-a-solution-to-corona-virus-cancellations-for-conferences.

[185] Hideo Saito and Takeo Kanade. Shape Reconstruction in Projective Grid Space
from Large Number of Images. In Proc. CVPR, 1999.

[186] Ashutosh Saxena, Min Sun, and Andrew Y Ng. Make3D: Learning 3D Scene
Structure from a Single Still Image. Trans. PAMI, 2008.

[187] Daniel Scharstein and Richard Szeliski. Stereo Matching with Nonlinear Diffu-
sion. IJCV, 1998.

[188] Daniel Scharstein and Richard Szeliski. A Taxonomy and Evaluation of Dense
Two-Frame Stereo Correspondence Algorithms. IJCV, 2002.

[189] Grant Schindler, Frank Dellaert, and Sing Bing Kang. Inferring Temporal Order
of Images from 3D Structure. In Proc CVPR, 2007.

[190] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael
Frahm. Pixelwise View Selection for Unstructured Multi-View Stereo. In Proc.
ECCV, 2016.

[191] Thomas Schöps, Jakob Engel, and Daniel Cremers. Semi-Dense Visual Odom-
etry for AR on a Smartphone. In Proc. ISMAR. IEEE, 2014.

[192] Thomas Schöps, Torsten Sattler, Christian Häne, and Marc Pollefeys. 3D Mod-
eling on the Go: Interactive 3D Reconstruction of Large-Scale Scenes on Mobile
Devices. In 3D Vision (3DV), 2015.

[193] Steven M Seitz, Brian Curless, James Diebel, Daniel Scharstein, and Richard
Szeliski. A Comparison and Evaluation of Multi-View Stereo Reconstruction
Algorithms. In Proc. CVPR, 2006.

[194] Steven M Seitz and Charles R Dyer. Photorealistic Scene Reconstruction by
Voxel Coloring. IJCV, 1999.

[195] Scott Shane and David E. Sanger. Drone Crash in
Iran Reveals Secret U.S. Surveillance Effort. http:
//www.nytimes.com/2011/12/08/world/middleeast/
drone-crash-in-iran-reveals-secret-us-surveillance-bid.html.
Accessed: 2016-08-11.

[196] Jonathan Richard Shewchuk. Triangle: Engineering a 2D Quality Mesh Gener-
ator and Delaunay Triangulator. In Applied Computational Geometry: Towards
Geometric Engineering, 1996.

148

https://www.forbes.com/sites/moorinsights/2020/03/02/how-vr-and-ar-could-be-a-solution-to-corona-virus-cancellations-for-conferences
https://www.forbes.com/sites/moorinsights/2020/03/02/how-vr-and-ar-could-be-a-solution-to-corona-virus-cancellations-for-conferences
http://www.nytimes.com/2011/12/08/world/middleeast/drone-crash-in-iran-reveals-secret-us-surveillance-bid.html
http://www.nytimes.com/2011/12/08/world/middleeast/drone-crash-in-iran-reveals-secret-us-surveillance-bid.html
http://www.nytimes.com/2011/12/08/world/middleeast/drone-crash-in-iran-reveals-secret-us-surveillance-bid.html


[197] Jonathan Richard Shewchuk. Delaunay Refinement Algorithms for Triangular
Mesh Generation. Computational Geometry, 2002.

[198] Jianbo Shi and Carlo Tomasi. Good Features to Track. In Proc. CVPR, 1994.

[199] Jeremy G Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Li-
brary: User Guide and Reference Manual, Portable Documents. Pearson Edu-
cation, 2001.

[200] Randall Smith, Matthew Self, and Peter Cheeseman. A Stochastic Map for
Uncertain Spatial Relationships. In Proc. ISRR, 1987.

[201] Noah Snavely, Steven M Seitz, and Richard Szeliski. Photo Tourism: Exploring
Photo Collections in 3D. In Transactions on Graphics (TOG), 2006.

[202] Ted J. Steiner, Robert D. Truax, and Kristoffer Frey. A Vision-aided Inertial
Navigation System for Agile High-speed Flight in Unmapped Environments. In
Proc. IEEE Aerospace Conference, 2017.

[203] Hauke Strasdat, J Montiel, and Andrew J Davison. Scale Drift-Aware Large
Scale Monocular SLAM. Proc. RSS, 2010.

[204] Hauke Strasdat, JMM Montiel, and Andrew J Davison. Real-time monocular
SLAM: Why filter? In Proc. ICRA, 2010.

[205] Hauke Strasdat, José MM Montiel, and Andrew J Davison. Visual SLAM: Why
filter? Image and Vision Computing, 2012.

[206] Steve Strunsky. Fugitive who fled police in Passaic River sewer pipe may be
trapped, cops say. http://www.nj.com/essex/index.ssf/2016/08/passaic_
river_manhunt_intensifies_after_suspect_es.html. Accessed: 2016-08-
04.

[207] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A Benchmark
for the Evaluation of RGB-D SLAM Systems. In Proc. IROS, 2012.

[208] Peter Swerling. A Proposed Stagewise Differential Correction Procedure for
Satellite Tracking and Prediction. Rand Corporation, 1958.

[209] Richard Szeliski. A Multi-View Approach to Motion and Stereo. In Proc.
CVPR, 1999.

[210] Richard Szeliski. Computer Vision: Algorithms and Applications. Springer
Science & Business Media, 2010.

[211] Richard Szeliski and Polina Golland. Stereo Matching with Transparency and
Matting. IJCV, 1999.

[212] Chengzhou Tang and Ping Tan. BA-Net: Dense bundle adjustment network.
arXiv preprint arXiv:1806.04807, 2018.

149

http://www.nj.com/essex/index.ssf/2016/08/passaic_river_manhunt_intensifies_after_suspect_es.html
http://www.nj.com/essex/index.ssf/2016/08/passaic_river_manhunt_intensifies_after_suspect_es.html


[213] Keisuke Tateno, Federico Tombari, Iro Laina, and Nassir Navab. CNN-SLAM:
Real-Time Dense Monocular SLAM with Learned Depth Prediction. In Proc.
CVPR, 2017.

[214] Brad Templeton. TeslaâĂŹs âĂŸFull Self-DrivingâĂŹ
Is 99.9% There, Just 1,000 Times Further To Go.
https://www.forbes.com/sites/bradtempleton/2020/10/23/
teslas-full-self-driving-is-999-there-just-1000-times-further-to-go.

[215] Demetri Terzopoulos. Regularization of Inverse Visual Problems Involving Dis-
continuities. Trans. PAMI, 1986.

[216] Demetri Terzopoulos and Dimitri Metaxas. Dynamic 3D Models with Local
and Global Deformations: Deformable Superquadrics. In Proc. ICCV, 1990.

[217] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics.
MIT Press, 2005.

[218] Sebastian Thrun, Dieter Fox, Wolfram Burgard, and Frank Dellaert. Robust
Monte Carlo Localization for Mobile Robots. Artificial intelligence, 2001.

[219] Sebastian Thrun, Yufeng Liu, Daphne Koller, Andrew Y Ng, Zoubin Ghahra-
mani, and Hugh Durrant-Whyte. Simultaneous Localization and Mapping with
Sparse Extended Information Filters. IJRR, 2004.

[220] Sebastian Thrun and Michael Montemerlo. The GraphSLAM Algorithm with
Applications to Large-Scale Mapping of Urban Structures. IJRR, 2006.

[221] Carlo Tomasi and Takeo Kanade. Detection and Tracking of Point Features.
Technical report, Carnegie Mellon University, 1991.

[222] Bill Triggs, Philip F McLauchlan, Richard I. Hartley, and Andrew W Fitzgib-
bon. Bundle Adjustment – A Modern Synthesis. In International Workshop on
Vision Algorithms, 1999.

[223] B. Ummenhofer, H. Zhou, J. Uhrig, N. Mayer, E. Ilg, A. Dosovitskiy, and
T. Brox. DeMoN: Depth and Motion Network for Learning Monocular Stereo.
In Proc. CVPR, 2017.

[224] Olga Veksler. Efficient Graph-Based Energy Minimization Methods in Computer
Vision. PhD thesis, Cornell University, 1999.

[225] Matthew R Walter, Ryan M Eustice, and John J Leonard. Exactly Sparse
Extended Information Filters for Feature-Based SLAM. IJRR, 2007.

[226] Eric A. Wan and Rudolph van der Merwe. The Unscented Kalman Filter for
Nonlinear Estimation. In Adaptive Systems for Signal Processing, Communica-
tions, and Control Symposium, 2000.

150

https://www.forbes.com/sites/bradtempleton/2020/10/23/teslas-full-self-driving-is-999-there-just-1000-times-further-to-go
https://www.forbes.com/sites/bradtempleton/2020/10/23/teslas-full-self-driving-is-999-there-just-1000-times-further-to-go


[227] Kaixuan Wang and Shaojie Shen. MVDepthNet: Real-Time Multiview Depth
Estimation Neural Network. In Proc. 3DV, 2018.

[228] Kaixuan Wang and Shaojie Shen. Flow-Motion and Depth Network for Monoc-
ular Stereo and Beyond. In Proc. ICRA, 2020.

[229] Rui Wang, Martin Schworer, and Daniel Cremers. Stereo DSO: Large-Scale
Direct Sparse Visual Odometry with Stereo Cameras. In Proc. ICCV, 2017.

[230] Sen Wang, Ronald Clark, Hongkai Wen, and Niki Trigoni. DeepVO: Towards
End-to-End Visual Odometry with Deep Recurrent Convolutional Neural Net-
works. In Proc. ICRA, 2017.

[231] Andreas Wendel, Michael Maurer, Gottfried Graber, Thomas Pock, and Horst
Bischof. Dense Reconstruction On-the-Fly. In Proc. CVPR, 2012.

[232] Stephen Williams, Vadim Indelman, Michael Kaess, Richard Roberts, John J
Leonard, and Frank Dellaert. Concurrent Filtering and Smoothing: A Parallel
Architecture for Real-Time Navigation and Full Smoothing. IJRR, 2014.

[233] Yuxin Wu and Kaiming He. Group Normalization. In Proc. ECCV, 2018.

[234] H. Yang, J. Shi, and L. Carlone. TEASER: Fast and Certifiable Point Cloud
Registration. Trans. on Robotics, 2020.

[235] Heng Yang, Pasquale Antonante, Vasileios Tzoumas, and Luca Carlone. Gradu-
ated Non-Convexity for Robust Spatial Perception: From Non-Minimal Solvers
to Global Outlier Rejection. IEEE Robotics and Automation Letters, 2020.

[236] N. Yang, R. Wang, J. Stueckler, and D. Cremers. Deep Virtual Stereo Odome-
try: Leveraging Deep Depth Prediction for Monocular Direct Sparse Odometry.
In Proc. ECCV, 2018.

[237] Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan. MVSNet: Depth
Inference for Unstructured Multi-View Stereo. In Proc. ECCV, 2018.

[238] Ramin Zabih and John Woodfill. Non-Parametric Local Transforms for Com-
puting Visual Correspondence. In Proc. ECCV, 1994.

[239] Jure Zbontar and Yann LeCun. Computing the Stereo Matching Cost with a
Convolutional Neural Network. In Proc. CVPR, 2015.

[240] Huangying Zhan, Chamara Saroj Weerasekera, Jia-Wang Bian, and Ian Reid.
Visual Odometry Revisited: What Should be Learnt? In Proc. ICRA, 2020.

[241] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G. Lowe. Unsuper-
vised Learning of Depth and Ego-Motion from Video. In Proc. CVPR, 2017.

151


	Introduction
	Monocular SLAM
	Dense Depth Estimation is Expensive
	Metric Scale is Unobservable
	Pixel Matching is Affected by View
	Contributions
	Publications

	Monocular Simultaneous Localization and Mapping
	Probabilistic Formulation
	SLAM as a Factor Graph
	Backend vs. Frontend

	Backend
	Filter-based Approaches
	Smoothing-based Approaches

	Frontend
	Epipolar Geometry
	Visual Landmark Factors
	Visual Odometry Factors

	Full Systems
	Sparse Methods
	Dense Methods
	Semi-Dense Methods
	Visual-Inertial Methods
	Learning-based Methods

	Dense Monocular Depth Estimation
	Depth Estimation via Stereopsis
	Spatial Regularization
	Learned Depth Estimation


	Fast Lightweight Mesh Estimation
	Related Work
	Variational Smoothing
	Method
	Feature Inverse Depth Estimation
	Mesh Construction
	Non-Local Second Order Variational Cost
	Graph Optimization
	Frame-to-Frame Propagation

	Evaluation
	Benchmark Datasets
	Flight Experiments
	Improvements

	Conclusion

	Metric Monocular SLAM using Learned Scale Factors
	Related Work
	Method
	Single-view Depth Regression
	Local Visual Odometry
	Global Pose Graph

	Evaluation
	Implementation Details
	KITTI Odometry Evaluation
	Handheld Odometry Evaluation
	Improvements

	Conclusion

	View-Compensated Multi-View Stereo Depth Estimation
	Related Work
	Two-View Stereo
	Multi-View Stereo

	Method
	Reference Feature Network
	Incremental Viewpoint-Compensated Feature Network
	Cost Volume Formulation and Filtering
	Depth Regression and Guided Refinement
	Multi-View Fusion

	Evaluation
	Implementation Details
	DeMoN Benchmark
	Multi-View Evaluation
	Viewpoint Compensation Evaluation
	Refinement Ablation Experiments
	Sensitivity to Pose Errors
	Improvements

	Conclusion

	Conclusion
	Future Work: Learning Mesh Vertices
	Future Work: Learning Scale without Depth
	Future Work: Learning Depth Online


