
Real-Time Dense Simultaneous Localization and
Mapping using Monocular Cameras

by

W. Nicholas Greene
B.S.E., Princeton University (2010)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2016

c○2016 William Nicholas Greene, All rights reserved.
The author hereby grants to MIT and The Charles Stark Draper Laboratory, Inc.

permission to reproduce and to distribute publicly paper and electronic copies of this
thesis document in whole or in any part medium now known or hereafter created.

Author .
Department of Aeronautics and Astronautics

August 18, 2016

Certified by. .
Nicholas Roy

Associate Professor of Aeronautics and Astronautics
Thesis Supervisor

Certified by. .
Dr. Ted J. Steiner

Senior Member of the Technical Staff, Draper
Thesis Supervisor

Accepted by .
Paulo C. Lozano

Associate Professor of Aeronautics and Astronautics
Chair, Graduate Program Committee

2

Real-Time Dense Simultaneous Localization and Mapping

using Monocular Cameras

by

W. Nicholas Greene

Submitted to the Department of Aeronautics and Astronautics
on August 18, 2016, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

Cameras are powerful sensors for robotic navigation as they provide high-resolution
environment information (color, shape, texture, etc.), while being lightweight, low-
power, and inexpensive. Exploiting such sensor data for navigation tasks typically
falls into the realm of monocular simultaneous localization and mapping (SLAM),
where both the robot’s pose and a map of the environment are estimated concurrently
from the imagery produced by a single camera mounted on the robot.

This thesis presents a monocular SLAM solution capable of reconstructing dense
3D geometry online without the aid of a graphics processing unit (GPU). The key
contribution is a multi-resolution depth estimation and spatial smoothing process
that exploits the correlation between low-texture image regions and simple planar
structure to adaptively scale the complexity of the generated keyframe depthmaps
to the quality of the input imagery. High-texture image regions are represented at
higher resolutions to capture fine detail, while low-texture regions are represented at
coarser resolutions for smooth surfaces. This approach allows for significant compu-
tational savings while simultaneously increasing reconstruction density and quality
when compared to the state-of-the-art. Preliminary qualitative results are also pre-
sented for an adaptive meshing technique that generates dense reconstructions using
only the pixels necessary to represent the scene geometry, which further reduces the
computational requirements for fully dense reconstructions.

Thesis Supervisor: Nicholas Roy
Title: Associate Professor of Aeronautics and Astronautics

Thesis Supervisor: Dr. Ted J. Steiner
Title: Senior Member of the Technical Staff, Draper

3

4

Acknowledgments

First and foremost, I would like to thank my family for all their support and en-

couragement over the years, especially Dad for prodding me to get my foot in the

MIT door. Thank you to Nick Roy for giving me the opportunity the join his group

and for all the invaluable advice and guidance, especially before I became a grad

student. Thank you to the Draper Fellow Program and the DARPA Fast Lightweight

Autonomy Program for funding my work, as well as Paul DeBitetto, Pete Lommel,

Ted Steiner, and all the members of Draper for providing additional mentorship and

feedback. Thanks to Sanjeev Kulkarni at Princeton and Jonathan Su and all my old

colleagues at Lincoln Laboratory for providing the academic foundation on which I

now stand. Finally, thanks to all the members of the Robust Robotics Group and the

FLA team for making research fun.

5

6

Contents

1 Introduction 13

1.1 Motivation . 13

1.2 Simultaneous Localization and Mapping 14

1.2.1 Why Cameras? . 16

1.2.2 Sparse Monocular SLAM . 17

1.2.3 Dense Monocular SLAM . 18

1.2.4 Semi-Dense Monocular SLAM 19

1.3 Thesis Overview . 19

2 Monocular Simultaneous Localization and Mapping 21

2.1 Probabilistic Formulation . 21

2.1.1 Graphical Model . 23

2.1.2 Backend vs. Frontend . 24

2.2 Backend . 24

2.2.1 Filter-based Approaches . 25

2.2.2 Smoothing-based Approaches 26

2.3 Frontend . 28

2.3.1 Epipolar Geometry . 28

2.3.2 Visual Odometry . 29

2.3.3 Depth Estimation . 33

2.4 Full Systems . 39

2.4.1 Sparse Methods . 39

2.4.2 Dense Methods . 41

7

2.4.3 Semi-Dense Methods . 42

3 Multi-Level Mapping 45

3.1 Algorithm Outline . 46

3.2 Problem Formulation . 47

3.2.1 Notation . 47

3.2.2 Problem Statement . 48

3.3 Tracking on SE(3) . 49

3.4 Depth Estimation using Quadtree Keyframes 51

3.5 Hole-Filling . 54

3.6 Triangulation and Rasterization . 55

3.7 Spatial Regularization . 56

3.8 Pose-graph Optimization on Sim(3) 63

3.9 Summary . 64

4 Evaluation 67

4.1 Qualitative Evaluation . 67

4.2 Quantitative Evaluation . 70

4.3 Discussion . 76

5 Adaptive Depth Meshing 77

5.1 Algorithm Outline . 78

5.2 Pixel Tracking . 79

5.3 Depth Estimation and Fusion . 81

5.4 Mesh Refinement . 82

5.4.1 Delaunay Triangulation . 82

5.4.2 Regularization . 83

5.4.3 Mesh Augmentation . 83

5.5 Preliminary Results . 84

5.6 Discussion . 87

6 Conclusion 89

8

List of Figures

1-1 SLAM Example . 15

1-2 Popular Sensors for SLAM . 16

2-1 SLAM Factor Graph . 23

2-2 Epipolar Geometry . 29

2-3 Two-Frame Depth Estimation . 34

3-1 MLM Pipeline . 46

3-2 Quadtree Keyframe . 51

3-3 Single-level Depth Estimation . 52

3-4 MLM Depth Estimation . 52

3-5 Triangulation . 56

3-6 Discrete derivative computation . 59

4-1 MLM Results: Bench and Desk Datasets 68

4-2 MLM Results: Workspace Dataset . 69

4-3 MLM vs. LSD-SLAM Depthmap Comparison 72

4-4 MLM Results: Relative Inverse Depth Error 73

4-5 MLM Results: Average Keyframe Density 73

4-6 MLM vs. LSD-SLAM Point Cloud Comparison 74

4-7 MLM Results: TUM Dataset . 75

5-1 Pixel Tracking and Wide-baseline Depth Estimation 81

5-2 Delaunay Triangulation and Rasterization 82

5-3 Depth Meshing Results . 85

9

5-4 Depth Meshing Point Cloud . 86

10

List of Tables

4.1 MLM Tracking Accuracy . 70

4.2 MLM Mapping Runtime . 71

11

12

Chapter 1

Introduction

Despite the rapid progress in monocular SLAM over the last several years, state-of-

the-art approaches are either too computationally expensive, too limited in scale, or

too geometrically sparse to be successfully used for high-speed MAV navigation. This

thesis presents research that addresses some of the shortcomings of sparse, dense,

and semi-dense monocular SLAM methods and allows fully dense geometry to be

estimated with the speed, efficiency, and scale of semi-dense methods. This chapter

outlines the motivation behind the research (Section 1.1), a brief introduction to the

monocular SLAM problem (Section 1.2), and provides an overview of the subsequent

chapters (Section 1.3).

1.1 Motivation

The mobile robotics field has expanded rapidly over the last twenty years, driven

by a combination of factors including advances in small, lightweight sensors, robust

algorithms expressed in the language of probability theory to interpret those sensors,

and powerful computing hardware to drive those algorithms. While robots have been

used in industrial contexts, mobile robots are just now becoming viable for many non-

industrial applications, including for autonomous driving [1], aerial photography [2],

search and rescue [3], and intelligence, surveillance, and reconnaissance (ISR) [4].

One class of robotic platforms that has received a sizable amount of interest over

13

this time has been micro-aerial vehicles (MAVs) such as quadrotors, hexrotors, and

fixed-wing aircraft, which typically weigh between 0.5-5kg and measure between 0.25-

2m in diameter. Their speed and agility, coupled with their mechanical simplicity and

well-understood dynamics models, make them ideal platforms for academic research as

well as applications ranging from package delivery [5, 6] to planetary exploration [7, 8].

Despite a number of successes and continued promise, however, today’s autonomous

MAVs are severely limited in the speed and agility with which they can safely fly, espe-

cially when restricted to the unknown, GPS-denied, and comms-denied environments

that occur in the real world. Without pre-built maps, external localization services

such as GPS, or communications links like Wi-Fi, MAVs must perform all sensing

and computation onboard, which is a significant challenge given the platform’s size,

weight, and power (SWaP) restrictions and which effectively constrains today’s MAVs

to navigating 2D slices of the world at speeds far below their dynamic capabilities.

Efficiently extracting information relevant to collision-free motion using only the

low-SWaP sensors and computation that can be carried onboard these small robots

is the overarching problem that motivates this work. While high-speed, GPS-denied

navigation presents challenges at all levels of the autonomy pipeline (from low-level

control to high-level task planning), this thesis focuses on improving the state-of-

the-art in state estimation and perception using only a single commodity monocular

camera as the primary sensor and a mobile computer without a high-SWaP discrete

graphics processing unit (GPU) as the primary compute device. The central algo-

rithm of this thesis, Multi-Level Mapping (MLM) [9], as well as an adaptive meshing

approach, will be presented and shown to produce the dense geometric information

needed for high-speed motion planning even with low-SWaP hardware.

1.2 Simultaneous Localization and Mapping

Any state estimation and perception system used on a mobile robot typically needs

to provide two principal quantities for the purposes of collision-free navigation in an

unknown environment: the pose (i.e. position and orientation) of the robot and a

14

Figure 1-1: Simultaneous localization and mapping (SLAM) is a classical problem in
robotics where a robot equipped with an imperfect sensor (e.g. a quadrotor with a
camera) moves through an environment and observes various landmarks (e.g. pillars
and trees) over time. The robot must fuse the noisy measurements of the landmarks
to estimate its pose, while simultaneously mapping the environment. In the scenario
depicted, a quadrotor with a camera moves through the world from time 𝑡 = 0 to
𝑡 = 2 and observes pillar landmarks 𝑝0 and 𝑝2 and tree landmark 𝑝1.

map of the environment that encodes obstacles. Both quantities are usually needed

to order to plan motions through the environment that do not collide with obstacles.

Simultaneous localization and mapping (SLAM) is the traditional formulation of

this problem where a robot with imperfect sensors traverses an unknown environment

with a set of landmarks. As the robot moves, it perceives the landmarks through its

sensors and fuses these noisy measurements in order to localize itself with respect to

those landmarks, which have to be estimated (or mapped) concurrently (see Figure 1-

1). The chicken-and-egg nature of the problem (estimate the robot’s pose requires a

map, and estimating the map requires the robot’s pose), has led to many strategies

to compute both quantities simultaneously in real-time.

15

(a) 2D Scanning Lidar (b) Active Structure-Light RGB-D Camera

(c) Passive Stereo Camera (d) Passive Monocular Camera

Figure 1-2: A variety of sensors can be used for SLAM, including 2D scanning LI-
DARS [10], structured light RGB-D cameras [11], passive stereo cameras [12], and
passive monocular cameras [13]. Each sensing modality has strengths and weaknesses,
but this work concentrates on passive monocular cameras since they can be used both
indoors and outdoors, can range to arbitrarily far objects given sufficient baseline,
and are low SWaP, inexpensive, and ubiquitous.

1.2.1 Why Cameras?

A variety of sensing modalities may be used to drive a SLAM pipeline (see Figure 1-

2), but traditional sensor suites typically include an inertial measurement unit (IMU)

that measures the linear accelerations and angular rates experience by the robot and

a range sensor such as an ultrasonic rangefinder or scanning LIDAR [10]. Scanning

LIDARS, both the 2D and 3D varieties, have driven much of the work in SLAM

over the last fifteen years, but are problematic for small, agile robots such as MAVs

because they are either high-SWaP (the smallest 3D LIDARS typically weigh more

than 1kg) or do not adequately observe the environment (2D LIDARS only perceive

slices of the environment at a time, which is insufficient for MAVs undergoing severe

pitch and roll angles).

Cameras, on the other hand, are attractive sensors for high-speed MAV navigation

as they provide high-resolution environment information (color, shape, texture, etc.),

while being lightweight, low-power, and inexpensive. Active or multi-camera variants

such as structured-light and stereo cameras may also perceive depth information

16

directly, which is valuable for SLAM. This work, however, focuses on monocular (i.e.

passive, single-lens) cameras for a number of reasons.

First, active sensors based on structured light or time-of-flight technology [11] have

a limited detection range (typically ∼ 5m) and are essentially inoperable in sunlight

due to electromagnetic interference. Passive stereo cameras [12] work outdoors, but

their detection range is limited by the baseline between the two cameras, which is

necessarily small on MAVs, and requires accurate calibration to be effective.

Passive monocular cameras [13], however, are robust to sunlight and can detect

distant structure given sufficient translational motion between frames. Spurred by the

rapid adoption of smartphone technology, they are also smaller, lighter, and cheaper

than the aforementioned alternatives and nearly ubiquitous. The next sections out-

line the three dominant approaches to performing SLAM using monocular cameras

without an onboard IMU.

1.2.2 Sparse Monocular SLAM

Sparse monocular SLAM is the most mature form of SLAM using monocular cameras

and has its roots in the photogrammetry and computer vision communities as a

related problem called Structure-from-Motion (SfM) [14, 15]. SfM can be considered

an offline version of sparse monocular SLAM that generalizes to the case of multiple

cameras, non-sequential images, and images taken at different times [16]. Given a

set of images, SfM algorithms estimate the pose of the camera where each image

was taken, along with a sparse point cloud of features which represent the map.

Typically, salient features (e.g. corners or lines) [17, 18, 19] are detected in the images

and associated across frames. Given these associations, the relative pose transform

between the images can be inferred [20, 21], which then informs the 3D locations

of the points that correspond to the features. Finding the optimal setting for both

the poses and map points is usually accomplished using an approach called bundle

adjustment [22, 23, 24, 16, 25, 26], which frames the problem as a sparse, nonlinear

least squares objective that can be optimized efficiently using the Gauss-Newton or

Levenberg-Marquardt algorithms [27, 28].

17

While early sparse monocular SLAM methods used the probabilistic filtering ap-

proaches common at the time for LIDAR-based SLAM [29], modern variants effec-

tively perform online bundle adjustment by estimating the pose for a subset of images,

while concurrently estimating a sparse feature-based point cloud map [30, 31]. Salient

features are first detected in an image, and then associated with the features that com-

prise the current map, which allows the current pose of the camera to be estimated.

The camera poses are then used to refine the map by minimizing a nonlinear least

squares objective function.

1.2.3 Dense Monocular SLAM

While sparse monocular SLAM algorithms are still preferred when optimizing for

the camera trajectory due to their ability to cleanly and efficiently close loops and

minimize drift (even more so when fused with IMU information [32, 33, 34]), the

sparse point cloud map representation poses problems if the map is to be used for

online motion planning to avoid obstacles. Although the number and density of

features may vary from algorithm to algorithm, they typically do not allow for free

and occupied space to be differentiated.

Driven by the proliferation of massively parallel graphics processing units (GPUs)

and general purpose GPU (GPGPU) programming languages such as CUDA and

OpenCL, as well as interest from the virtual and augmented reality communities,

dense monocular SLAM methods have shown promise in computing the type of maps

required for high-speed, online motion planning [35, 36, 37, 38, 39, 40]. Leveraging the

power of the GPU, dense approaches estimate depth for every pixel in each incoming

frame into either dense point cloud or mesh representations that can be used to

describe obstacles in extremely fine detail.

The roots of these approaches lie in the stereo and multi-view stereo (MVS) lit-

erature, where dense geometry is estimated from a set on images taken from known

poses [41, 42, 43]. Rather than detecting a sparse set of salient features and associ-

ating them across images, MVS algorithms typically match patches of pixels in one

image with those of another comparison image that lie along the epipolar line — the

18

projection of the ray of all possible depths onto the comparison image. The noisy

depth estimates are then fused and spatially regularized.

1.2.4 Semi-Dense Monocular SLAM

Though there has been some work porting dense monocular SLAM methods to mo-

bile devices [39], dense methods still prove to be too computationally expensive for

low-SWaP MAVs, even with recent system-on-a-chip (SOC) GPU hardware [44]. Fur-

thermore, state-of-the-art dense algorithms do not currently scale to the large envi-

ronments that high-speed MAVs will likely need to fly through.

Semi-dense monocular SLAM approaches are currently an attractive compromise

between the speed and scale of sparse methods and the density of dense meth-

ods [45, 46, 47, 48]. Rather than estimating depth for every input pixel, semi-dense

approaches focus computational resources on the high-gradient pixels that carry the

most information, while ignoring low-texture regions that carry very weak depth in-

formation. This allows semi-dense approaches, such as LSD-SLAM [47], to capture

detailed geometry in high-texture areas, but still scale to large environments and run

at camera frame-rate without the need for GPU acceleration.

1.3 Thesis Overview

Despite the speed and scale that semi-dense monocular SLAM algorithms provide, the

resulting point cloud maps suffer from the same problems as those of sparse methods

— namely that they do not allow free and occupied space to be differentiated and

thus are not yet able to be used for high-speed MAV navigation. This thesis presents

research that addresses some of the shortcomings of the aforementioned sparse, dense,

and semi-dense monocular SLAM methods and allows fully dense geometry to be

estimated with the speed, efficiency, and scale of semi-dense methods, bringing MAV-

capable dense monocular SLAM one step closer to viability.

The central result of this thesis is a dense algorithm called Multi-Level Mapping

(MLM) [9], which allows dense 3D geometry to be estimated online without the aid

19

of a graphics processing unit (GPU). The key contribution is a multi-resolution depth

estimation and spatial smoothing process that exploits the correlation between low-

texture image regions and simple planar structure to adaptively scale the complexity

of the generated reconstruction to the quality of the input imagery. High-texture

image regions are represented at higher resolutions to capture fine detail, while low-

texture regions are represented at coarser resolutions for smooth surfaces. This ap-

proach allows for significant computational savings while increasing reconstruction

density and quality compared to the state-of-the-art.

Preliminary results are also presented for an adaptive meshing technique that

further reduces the computational requirements for fully dense reconstructions. The

intuition behind the approach is that it is much cheaper to check whether a depth

hypothesis is supported by the available imagery than it is to actually compute the

correct depth. To that end, we maintain a piecewise-linear dense depth mesh whose

vertices comprised a subset of the high-image gradient pixels. At each frame, the mesh

is refined by computing the stereo matching cost for each pixel in the dense depthmap

induced by the mesh. Vertices are then added to the mesh where the interpolated

depthmap poorly fits the input imagery, such that depths are only computed for those

pixels that are needed to represent the geometry in the scene, which may result in a

significant speedup over the state-of-the-art.

The layout of the rest of this thesis is as follows. Chapter 2 presents an overview

of the monocular SLAM problem with relevant related work and background infor-

mation. Chapter 3 then dives into the MLM algorithm in detail, while Chapter 4

contains the qualitative and quantitative evaluation of the algorithm. Chapter 5

presents the adaptive depth meshing technique along with preliminary results. The

thesis is concluded in Chapter 6.

20

Chapter 2

Monocular Simultaneous Localization

and Mapping

This chapter gives a brief overview of the monocular SLAM problem and its solutions.

Section 2.1 discusses the probabilistic formulation of the SLAM problem, its modern

interpretation as a sparse factor graph, and the distinction between the backend fac-

tor graph solvers and frontend factor generators that compose most modern SLAM

pipelines. Section 2.2 then goes into more detail on the SLAM backend, first cov-

ering early filtering-based approaches that marginalize out the past before detailing

modern smoothing-based methods that solve for the entire state trajectory. From

there, Section 2.3 covers different aspects of the the monocular SLAM frontend, from

epipolar geometry, to visual odometry, to depth estimation and regularization. Fi-

nally, Section 2.4 presents full monocular SLAM solutions in detail, including sparse,

dense, and semi-dense pipelines.

2.1 Probabilistic Formulation

Recall the scenario depicted in Figure 1-1. At each discrete timestep 𝑖 ∈ N, our

robot moves through the world and observes a set of landmarks through its imperfect

sensors. It must then fuse those noisy measurements to estimate its state in addition

to the state of the map.

21

To begin, let us denote the robot (or camera) pose at time 𝑖 by x𝑖 ∈ 𝒳 . Typically,

we are interested in the 3D pose of the robot and thus 𝒳 = SE(3), the group of rigid

body transformations. At times, however, we may need to generalize to other groups

such as Sim(3), the group of similarity transforms [47, 9].

We assume that the robot motion can be described by a first-order Markov model

such that the distribution of the current pose x𝑖 is independent of the past given

the previous pose x𝑖−1. If we let X = (x0, . . . ,x𝑇) denote the pose history up to

time 𝑇 and U = (u1, . . . ,u𝑇) denote the odometry or control input history, then the

distribution of the pose history given the odometry 𝑝(X|U) can be factored according

to 𝑝(X|U) = 𝑝(x0)
∏︀𝑇

𝑖=1 𝑝(x𝑖|x𝑖−1,u𝑖), where 𝑝(x0) denotes the prior on the initial

state and 𝑝(x𝑖|x𝑖−1,u𝑖) denotes the motion model parameterized by odometry u𝑖.

Next, let P = (p1, . . . ,p𝑀) for p𝑗 ∈ R3 refer to the set of 𝑀 landmarks in the

map (we are typically only interested in their 3D positions). We assume that they

are stationary. Over time, the sensor aboard the robot will observe the landmarks

and produce some number 𝐾 noisy measurements Z = (z1, . . . , z𝐾) for z𝑘 ∈ 𝒵. The

measurement space 𝒵 will vary from system to system, but could be as simple as

the image domain Ω ⊂ R2 such that each measurement z𝑘 corresponds to the pixel

coordinates of a detected landmark. We assume that measurement z𝑘 depends only

on the pose of the robot x𝑖𝑘 at the time of observation and the particular landmark

under observation p𝑗𝑘 and can be modeled with likelihood function 𝑝(z𝑘|x𝑖𝑘 ,p𝑗𝑘).

(Note that we assume the association between measurement z𝑘 and the pose x𝑖𝑘 and

landmark p𝑗𝑘 is known.)

With these definitions in hand, the posterior distribution of the pose history X

and landmarks P given measurements Z and odometry U can be written as:

𝑝(X,P|Z,U) ∝ 𝑝(x0)
𝑇∏︁
𝑖=1

𝑝(x𝑖|x𝑖−1,u𝑖)
𝐾∏︁
𝑘=1

𝑝(z𝑘|x𝑖𝑘 ,p𝑗𝑘) (2.1)

The objective of SLAM will be to compute an estimate of the pose history X̂ and

the landmark map P̂ from this posterior distribution. For example, by maximizing

𝑝(X,P|Z,U) over X and P, we obtain the the maximum a posteriori (MAP) estimate.

22

Figure 2-1: The posterior distribution of the SLAM problem as described in Equa-
tion (2.1) can be represented succinctly as a factor graph. The variable nodes x0, x1,
x2 denote the robot state over time, while p0, p1, p2 signify the landmarks in the
map. The factor nodes u1, u2 show odometry constraints, while the z𝑖 factors repre-
sent noisy landmark observations. By emphasizing the factorization of the posterior
distribution through independence relations, this interpretation reveals the sparse
nature of the problem and insights into efficient solution strategies.

For further information on the probabilistic foundations of SLAM see [49, 50, 51].

2.1.1 Graphical Model

While the posterior distribution of the SLAM problem given in Equation (2.1) is useful

in its own right, its graphical representation, particularly as a factor graph [52], can

be more illuminating as it reveals more of the specific problem structure.

A factor graph 𝒢 = (𝒱 ,ℱ , ℰ) is a bipartite graph with variable nodes 𝑣𝑖 ∈ 𝒱 ,

factor nodes 𝑓𝑗 ∈ ℱ , and edges 𝑒𝑖𝑗 ∈ ℰ . Each edge 𝑒𝑖𝑗 connects a variable node and

a factor node. As its name implies, a factor graph is used to model the factorization

of a function over the variable nodes 𝑓(𝒱) =
∏︀

𝑗 𝑓𝑗(𝒱𝑗), where 𝒱𝑗 ⊆ 𝒱 . The specific

factorization of 𝑓 given by the 𝑓𝑗 ∈ ℱ dictates the graph structure. An edge 𝑒𝑖𝑗

connects variable 𝑣𝑖 and factor 𝑓𝑗 if 𝑣𝑖 ∈ 𝒱𝑗.

Looking to the posterior distribution 𝑝(X,P|Z,U) in Equation (2.1) again, we

can see that it is a function of four sets of variables 𝑝(X,P|Z,U) = 𝑓(X,P,U,Z),

and factorizes in a particular fashion given our conditional independence assump-

23

tions. We can therefore encode it as a factor graph with variable nodes 𝒱 = (X,P)

and factor nodes ℱ = (U,Z). The odometry factors constrain particular pairs of

pose variables, while the measurement factors constrain pairs of pose variables and

landmark variables (see Figure 2-1).

Computing solutions to the SLAM problem can now be considered a special case

of performing inference on probabilistic graphical models, where a number of relevant

algorithms exist in the literature [52, 53]. Furthermore, it should be apparent that the

graph structure induced by the SLAM problem is sparse — i.e. the number of edges

in the graph |ℰ| is far lower than that of a fully connected graph. This additional

structure can be exploited for further computational savings, allowing for large SLAM

problems to be solved quickly, in real-time [54, 55, 56].

2.1.2 Backend vs. Frontend

Given the graph interpretation of SLAM, a distinction can be made between generat-

ing the graph for a particular SLAM instance and solving that graph for a solution.

We will refer to the former process – that of generating the SLAM graph from in-

put data — as the SLAM frontend and refer to the latter process — that of finding

a solution for a given graph — as the SLAM backend. Much of the current work

in monocular SLAM deals more directly with the frontend, as generating factors is

more specific to the particulars of the input data (images in this case). Nonetheless,

it is worth covering a few of the influential SLAM backend solvers in more detail

(Section 2.2) before venturing to the frontend (Section 2.3).

2.2 Backend

Before discussing modern smoothing-based SLAM solvers in Section 2.2.2, we will

first detail the filter-based approaches that were popular during the early days of

SLAM in Section 2.2.1.

24

2.2.1 Filter-based Approaches

Before the full implications of the graphical nature of SLAM was widely understood

and appreciated, initial solutions modeled it as a state estimation problem to be

solved via recursive Bayesian estimators or nonlinear filters, such as the extended

Kalman filter (EKF), unscented Kalman filter (UKF) [57], and particle filter [58].

Posing SLAM as a state estimation problem was natural at the time, although we

now know it to be a special case of the more general graphical interpretation.

The earliest filter-based SLAM solution is considered to be EKF-SLAM [59, 60],

which (as its name implies) applied an EKF to compute the posterior distribu-

tion of the map P and the most recent pose x𝑇 given the measurement history

Z = (𝑧1, . . . , 𝑧𝑇) and odometry history U. Marginalizing out the past poses X− =

(x0, . . . ,x𝑇−1) from the posterior distribution in Equation (2.1) yields the familiar

recursive Bayesian update formula:

𝑝(x𝑇 ,P|Z,U) =

∫︁
X−

𝑃 (X,P|Z,U)𝑑X− (2.2)

= 𝑝(x𝑇 ,P|z𝑇 ,Z−,U) (2.3)

∝ 𝑝(z𝑇 |x𝑇 ,P)𝑝(x𝑇 ,P|Z−,U) (2.4)

= 𝑝(z𝑇 |x𝑇 ,P)

∫︁
x𝑇−1

𝑝(x𝑇 |x𝑇−1,u𝑇)𝑝(x𝑇−1,P|Z−,U−)𝑑x𝑇−1, (2.5)

where Z− = (z1, . . . , z𝑇−1) and U− = (u1, . . . ,u𝑇−1). The act of marginalizing out

past poses has the effect of eliminating those variables from the factor graph in 2-1

and introducing new factors between the remaining variables.

The following zero-mean, additive-Gaussian noise process and measurement mod-

els are assumed:

x𝑖 = 𝑓(x𝑖−1,u𝑖) + 𝑤𝑖, 𝑤𝑖 ∼ 𝒩 (0,𝑊) (2.6)

z𝑖 = ℎ(x𝑖𝑖 ,p𝑗𝑖) + 𝑣𝑖, , 𝑣𝑖 ∼ 𝒩 (0, 𝑉). (2.7)

When the prior 𝑝(x0) is assumed to be Gaussian and the process and measurement

25

models above are differentiable, the Bayesian update equations can be computed in

closed form (the well-known Kalman filter equations).

The first viable particle filter approach to SLAM is generally attributed to the

FastSLAM algorithm [61, 62], which exploits Rao-Blackwellization to overcome the

curse of dimensionality suffered by traditional particle filters. Typically, the num-

ber of samples required by a particle filter scales exponentially with the state space

dimension (the dimension of the pose history X and map P in the SLAM case).

Rao-Blackwellization allows significantly fewer particles to be used by partitioning

the filter state such that the distribution of some state variables can be represented

analytically.

In the SLAM context, the key insight is to apply the chain rule to the posterior

such that the distribution over the landmarks factorizes:

𝑝(X,P|Z,U) = 𝑝(X|Z,U)𝑝(P|X,Z,U) (2.8)

= 𝑝(X|Z,U)
𝑀∏︁
𝑗=1

𝑝(p𝑗|X,Z,U). (2.9)

The conditional independence of the landmarks P given the trajectory X is readily

apparent when the factor graph in Figure 2-1 is considered. Each landmark variable

p𝑗 ∈ P can now be represented analytically with (for example) a Gaussian distribu-

tion, while only the pose variables need to be approximated with samples. Further-

more, the sampling the pose history X can be done incrementally by sampling a new

pose for each particle at each timestep.

2.2.2 Smoothing-based Approaches

While the aforementioned filter-based approaches worked well for small-scale 2D prob-

lems, their limitations became apparent as SLAM moved to 3D, the process and

measurement models involved (as described in Equation 2.6) became more and more

nonlinear, and the scale of the problems under investigation grew with both the pose

history and map size.

26

First and foremost, the cubic complexity of the EKF precludes large maps from

being considered since the full covariance matrix over the current pose and landmarks

has to be maintained and inverted. Furthermore, marginalizing out past poses has

the side effect of introducing correlations between otherwise unrelated state variables,

ensuring that the covariance matrix becomes dense over time. Marginalization also

makes any errors introduced by the linearization process permanent, which can lead

to inconsistent solutions [63].

Smoothing-based approaches, on the other hand, sidestep these issues by solving

for the entire pose trajectory X along with the map P. The key intuition is that when

past poses are not marginalized away, the sparse structure of the SLAM problem, as

indicated by the factor graph in Figure 2-1, can be maintained, allowing for solutions

to be computed efficiently, despite the increase in the number of poses.

Consider the posterior distribution 𝑝(X,P|Z,U) from Equation (2.1) once more.

If we assume the same process and measurement models as described in Equa-

tion (2.6), then maximizing the posterior can be framed as a nonlinear least squares

problem:

argmax
X,P

𝑝(X,P|Z,U) = argmin
X,P

− log 𝑝(X,P|Z,U) (2.10)

= argmin
X,P

{︃
||x0 − 𝜇0||2Σ0

+
𝑇∑︁
𝑖=1

||x𝑖 − 𝑓(x𝑖−1,u𝑖)||2𝑊

+
𝐾∑︁
𝑘=1

||z𝑘 − ℎ(x𝑖𝑘 ,p𝑖𝑘)||2𝑉

}︃
. (2.11)

When optimized using Gauss-Newton or Levenberg-Marquardt, the quadratic ap-

proximation to this objective can be described by ||Ax − b||2, for x =
[︁
X𝑇 P𝑇

]︁𝑇
.

The measurement Jacobian A obtained by linearizing 𝑓 and ℎ is usually sparse, as is

the information matrix A𝑇A, both of which can be derived from the factor graph in

Figure 2-1.

This large, sparse nonlinear least squares problem can be solved efficiently in

a number of ways [64, 65, 66, 67] and has a large crossover with SfM and bundle

27

adjustment [22, 23, 25, 16, 24, 28, 26]. The most recent approaches compute solutions

to Equation (2.10) incrementally, which results in significant computational savings

since the new factors that are added to the graph as the robot explores typically only

affect nodes in the recent past [55, 56].

2.3 Frontend

Given a set of odometry factors U and landmark factors Z, we can pass them off to

a nonlinear least squares solver (such as iSAM [55, 56]) to compute the optimal pose

trajectory X and map P. Considerable effort must be exerted, however, to extract

these factors from raw sensor data, which in the passive monocular camera case is a

sequence of images. This section will outline the basic steps to computing odometry

and landmark (or depth) factors from imagery.

2.3.1 Epipolar Geometry

The factors that we would like to extract from a given video sequence are typically

defined by the epipolar geometry generated by the camera’s extrinsic parameters (i.e.

the camera poses) and intrinsic parameters (i.e. focal length and calibration) [15].

Consider the scenario depicted in Figure 2-2 with two images 𝐼1 and 𝐼2 from a video

sequence with relative transform T1
2 between the camera poses. The 3D landmark p1

projects into 𝐼1 as pixel u1, as do all points along the ray marked in red. This ray

projects into 𝐼2 as the line in green — the epipolar line. The pixel associated with

p1 in 𝐼2 must lie along this line. Now, if we knew T1
2, we would be able to compute

the epipolar line and search for the pixel that matches u1 along the line. With the

association we could then estimate the depth for p1. On the other hand, if we knew the

association, we could then back out T1
2. The latter process of estimating the relative

transformations between camera poses is called visual odometry and will be discussed

in Section 2.3.2. The former process of computing depth from pixel associations is

called depth estimation (or stereopsis) and will be detailed in Section 2.3.3. It should

be noted that both problems rely on the ability to accurately and robustly associate

28

Figure 2-2: In this scenario we have two images 𝐼1 and 𝐼2 taken from two different
poses, with the relative transformation between the two given by T1

2. The 3D point
p1 projects into 𝐼1 as pixel u1, as do all points along the ray in red. This ray projects
into 𝐼2 as the line in green — the epipolar line. The pixel in 𝐼2 that is associated with
p1 must lie along this line.

pixels across images.

2.3.2 Visual Odometry

Visual odometry entails estimating the relative pose of a moving camera (up to an

unknown scale factor) using just its images. Once computed, the relative poses can

then be added as odometry factors in a SLAM graph to optimize for the global

trajectory. Techniques usually fall into either feature-based or direct methods.

Feature-based monocular visual odometry methods generally appeared much ear-

lier than direct methods, with seminal work dating back to [68, 69, 70, 71, 72]. They

rely on detecting a small number of salient features (e.g. corners, lines, or blobs) in

the image stream that can be either tracked or matched across frames. The associated

features can then be used to estimate the relative motion between the frames.

There is a large body of work in the computer vision literature on detecting,

29

tracking, and matching features across images. Feature detection typically involves

efficiently selecting pixels in the image that are both distinctive and robust to scale,

rotation, or lighting changes. The earliest detectors attempted to find corners in

images by comparing patches around candidate pixels with slightly shifted versions.

Moravec corners [70], for example, computed the sum-of-squared-differences (SSD)

between the template patch and shifted patches along a set of cardinal directions,

issuing a detection if the SSD was high for all directions (the mismatch between the

patch and its shifted versions implies the pixel is distinctive). Harris corners [73]

and Shi-Tomasi corners [74] improved upon this idea by computing a quadratic ap-

proximation to the SSD cost at the candidate pixel and labeling it a corner if the

two eigenvalues of the Hessian (or some approximation to them) were both large.

Rather than directly computing the Hessian of the SSD cost, FAST (Features from

Accelerated Segment Test) [75] finds corners by performing a binary test between the

candidate pixel and a set of its neighbors — if a contiguous number 𝑛 of those neigh-

bors are all brighter or darker than the center pixel, the candidate pixel is labeled a

corner. Blobs, computed using the Difference-of-Gaussians (DoG) or Determinant-

of-the-Hessian approaches, are also a popular features [17, 18].

Once a set of features are detected, they must be either tracked into the next

frame (usually called sparse optical flow) or matched across different images. Feature

tracking can be accomplished by performing a nonlinear least squares optimization to

minimize the SSD between a patch around the feature in one image and its projection

into the second image (usually called Lucas-Kanade registration) [76]. The famous

Kanade-Lucas-Tomasi (KLT) feature tracker uses this least squares approach with

Shi-Tomasi corners [77]. Feature matching typically involves computing a robust

descriptor vector for the feature and performing brute-force, nearest-neighbor, or

RANSAC [78] matching with outlier rejection. Just as there are many approaches to

feature detection, there are many variations on computing robust (i.e. scale, rotation,

illumination, noise invariant) descriptors. SIFT [17] and HoG [79] descriptors are

based on histograms of gradient orientations around the feature, while SURF [18]

features use the sum of Haar-like wavelet responses. BRIEF [80], ORB [19], and

30

Census [81] features all use a series of comparison tests between the feature and set

of neighbors to construct a binary descriptor vector.

Once a set of features has been associated between two images, the 8-Point Al-

gorithm of [68] or the later 5-Point Algorithm of [82, 83] can be used in conjunction

with RANSAC to extract the relative transform between the two camera poses up

to an unknown scale factor. (This scale ambiguity arises from the loss of absolute

metric information that occurs when a 3D scene is projected onto a 2D image. Since

multiple scenes may project as the same image, it is only possible to recover the scene

geometry up to a scale factor.)

Consider Figure 2-2. Both the 8-Point and 5-Point algorithms exploit epipolar

constraints to estimate the rigid body transform T1
2 ∈ SE(3), composed of rotation

R1
2 ∈ SO(3) and translation t12 ∈ R3, between 𝐼1 and 𝐼2. Note that the vector t12

and the vector ū1 (the pixel u1 in homogeneous coordinates) define a plane — the

epipolar plane. The normal vector of this plane is given by

t12 × ū1 =
[︀
t12
]︀
× 𝑢̄1, (2.12)

where if t12 =
[︁
𝑥 𝑦 𝑧

]︁𝑇
, the skew-symmetric matrix [t12]× is defined as

[︀
t12
]︀
× =

⎡⎢⎢⎢⎣
0 −𝑧 𝑦

𝑧 0 −𝑥

−𝑦 𝑥 0

⎤⎥⎥⎥⎦ . (2.13)

This normal vector must be perpendicular to all vectors defined in the plane, including

p1 − t12 ∝ R1
2ū2, where u2 is the projection of p1 into 𝐼2. Thus,

(R1
2ū2)

𝑇
[︀
t12
]︀
× ū1 = ū𝑇

2R
2
1

[︀
t12
]︀
× ū1 (2.14)

= ū𝑇
2Eū1 (2.15)

= 0. (2.16)

The matrix E = R2
1 [t12]× is called the essential matrix and the constraint ū𝑇

2Eū1 = 0

31

must hold for all pixels u1,u2 that are associated with the same 3D point p1. Given a

set of associated pixels, E can be estimated by solving the linear system of equations

induced by the ū𝑇
2Eū1 = 0 constraints for each association. The rotation R1

2 and

translation t12 can then be recovered using singular value decomposition (SVD). As

their names suggest, the 8-Point and 5-Point algorithms require a minimum of 8 and

5 feature associations, respectively.

Rather than extracting and matching features, direct methods estimate the rigid

body motion between the two camera poses by incrementally aligning the raw pixel

values of the two images given depth information. The combination of depth infor-

mation and an initial estimate of the transform T1
2 (e.g. the identity) allows pixels in

𝐼1 to be projected into 𝐼2. The transform is then iteratively refined by minimizing the

pixel error between the projected (or warped) version of 𝐼1 and 𝐼2. This optimization

is usually framed as a Lucas-Kanade [76] style nonlinear least squares problem:

T̂1
2 = argmin

T∈SE(3)

∑︁
u∈Ω𝐷

||𝐼2(𝑤(u, 𝐷(u),T))− 𝐼1(u)||2, (2.17)

where the warp function 𝑤 projects pixel u into 𝐼2 assuming depth 𝐷(u) and relative

pose T. The set Ω𝐷 is the set of pixels that have depths and can be a sparse sampling

of pixels [45], the pixels in 𝐼1 with high-gradient [46], or every pixel [35].

The objective in Equation (2.17) is usually minimized by performing Gauss-

Newton or Levenberg-Marquardt steps [27], which repeatedly solve quadratic ap-

proximations to the cost by linearizing the residual 𝐼2(𝑤(u, 𝐷(u),T)) − 𝐼1(u) in T.

This approximation is typically only valid for small warps and so-called coarse-to-

fine strategies often need to be employed to ensure a good solution [84, 85]. The

optimization in 2.17 is first performed at the coarsest level of a power-of-two image

pyramid, which removes high spatial frequency components from the images and al-

lows a gross estimate of the transform to be obtained. That coarse solution is then

used to initialize the optimization at the next, higher resolution level where it is

refined.

In addition, the 𝐿2 norm used in Equation (2.17) may be overly sensitive to out-

32

liers, so it is often replaced by a robust error metric [86, 87] and optimized using iter-

atively reweighted least squares (IRLS), where a weighted version of Equation (2.17)

is solved that approximates the solution using the robust norm [88, 89, 90]. For more

detail on Lucas-Kanade optimization, see the tutorial presented in [91].

Direct visual odometry methods possess some notable advantages to sparse ap-

proaches. Since they rely on raw pixel intensities, no feature detection or extraction

steps need to be performed, which can often be expensive. Not relying on salient

features also means that more subtle (or general) information can be applied to the

optimization — for example any pixel with gradient information can influence the

optimization of Equation (2.17), while sparse methods rely on distinctive corner or

blob detection. Furthermore, the feature matching process is usually prone to outliers

and false matches, which can wreck havoc on the essential matrix estimation and is

why RANSAC is usually employed. Direct methods, however, degrade gracefully with

the presence of outliers — in addition to other forms of noise like motion blur and

illumination changes– when robust statistics are leveraged. They do require depth

information to be recovered, though, which is typically more difficult to obtain than

the camera pose itself. The standard approaches to depth estimation will be detailed

in Section 2.3.3.

2.3.3 Depth Estimation

Depth estimation (sometimes known as 3D reconstruction or stereopsis) refers to the

process of estimating the 3D structure of a scene (or the depth of the scene) given only

a set of 2D images (in addition to the poses from which the images were captured and

relevant camera calibration parameters). While depth information can be computed

using some of the visual odometry building blocks from Section 2.3.2, such as feature

detection, tracking, and matching (which is the basis for most sparse monocular

SLAM systems), the emphasis here will be on computing dense depth representations

that encode the surface geometry of the scene and allow for object modeling and

novel view prediction. To differentiate this problem from dense monocular SLAM,

remember that in the dense monocular SLAM case the camera poses are unknown

33

(a) Epipolar Search (b) Triangulation Given Correspondence

Figure 2-3: Depth estimation from a set of images is fundamentally a pixel association
or correspondence problem. With knowledge of the relative transform T1

2 , the
epipolar line corresponding to query pixel u1 can be computed in 𝐼2. By searching
for the pixel along this line that matches u1 as depicted in Figure 2-3a, the depth for
u1 can be estimated via triangulation as in Figure 3-5.

and must be estimated (along with the scene depth) in real-time. A common dense

monocular SLAM approach is to use spare methods to estimate the camera poses

that are then used to infer the dense scene geometry [36, 39, 37]. Despite the prior

knowledge of the camera poses, dense 3D reconstruction is still a difficult inference

problem.

It is also worth noting that while estimating dense depth information is invaluable

for understanding the 3D structure of an environment, the volume of data that this

entails is problematic for backend SLAM solvers. Given the depths to every pixel in a

camera image, the naive approach to incorporate this information into a SLAM graph

would be to initialize a landmark for each of these pixels and add a corresponding

landmark factor. When one considers the resolution and framerate of even the most

modest cameras used for SLAM, however, the number of factors this approach would

require will quickly overwhelm the state-of-the-art in sparse, incremental least squares

solvers. For example, the results shown for the iSAM2 [56] solver typically involve

34

tens of thousands of factors. Compare this with a modest camera that produces VGA

resolution images (640x480 pixels) at 30Hz, which would equate to roughly 300,000

landmark factors being inserted in the graph every 30 ms. The standard approach

around this problem is to remove the map entirely from the graph and solve for

just the pose trajectory (usually called pose-graph SLAM)[61, 62, 51]. The depth

information can still be exploited, however, by incorporating it into the odometry

factors (refer to dense visual odometry in Section 2.3.2).

The roots of the depth estimation problem lie predominantly in the stereo vision

literature, where the special cases of two-frame rectified stereo depth estimation [92,

93, 94] and (offline) multi-view stereo depth estimation [41, 42, 43] have been studied

extensively (see [95, 96, 97] for more information). As in the case of visual odometry

(particularly the feature-based variant), depth estimation is fundamentally a data

association or correspondence problem between the pixels of two images captured from

different views. Consider Figure 2-3 where a two-frame depth estimation problem is

set up. Suppose we wish to estimate the depth for pixel u1 in 𝐼1. Since the camera

poses are known, we can compute the epipolar line corresponding to u1 in 𝐼2. The

pixel in 𝐼2 corresponding to u1 must lie along this line. We can thus search along this

line for a pixel that matches u1 (usually a neighborhood around each candidate pixel

is considered to make the matching more robust). The optimal match û2 can then

be triangulated with u1 to estimate the depth of the 3D point that projects onto the

two pixels. Note that this process assumes that the neighborhood of pixels around

u1 and û2 are visually similar. This is typically called the Lambertian assumption,

where 3D points remain visually similar when observed from multiple viewpoints.

Nearly all stereo depth estimation algorithms follow this basic approach of epipolar

search, patch matching, and triangulation. There are a variety of matching costs that

can be used to associate pixels including SSD, sum-of-absolute differences (SAD),

normalized-cross-correlation (NCC), and binary matching costs such as the Census

Transform [81] (all similar to the work in sparse feature matching).

In addition, the representation of the depth information is another important

design choice as it often dictates how depth information from multiple compari-

35

son frames are fused. One standard approach is to define a 2D depthmap, in-

verse depthmap, or disparity map (they are usually interchangeable) [98, 99, 100].

A depthmap (or inverse depthmap) is a scalar function over the image domain

𝐷 : Ω → R+ that maps each pixel location to a depth (or inverse depth). A dis-

parity map is similar, but maps each pixel to disparity, which is the motion that a

pixel undergoes when projected into another image. If the depth of a point is large

compared to the baseline between the cameras, the pixel will not change much be-

tween frames and will thus exhibit low disparity. If the depth is small compared to the

camera baselines, the pixel will undergo larger motion between frames and the result-

ing disparity will be large. Depth information can be fused in these representations

using probabilistic filtering [46, 47, 45].

Voxel or grid-based approaches are another popular way to represent and fuse

depth information. Each voxel can be used to represent the aggregated matching

cost from each stereo comparison with high-cost voxels “carved” away [101, 102, 103].

Voxels can also represent the color of the scene (known as voxel coloring) [104] or the

distance to the nearest surface [105, 106, 107, 41]. Triangular meshes [108] and other

deformable models [109, 110] are also viable alternatives.

There is one important functional block that has been omitted from the discus-

sion so far — namely spatial regularization. As one can imagine, the epipolar search,

patch matching, triangulation, and fusion steps described above are all subject to

noise, errors, and outliers, and when used in isolation typically generate poor quality

reconstructions. (These approaches are usually referred to as local methods.) Fur-

thermore, the depths in large textureless image regions are generally unobservable

since the lack of gradient information cripples the patch matching process. (It is

also worth mentioning that since depth estimation relies on the camera poses, and

the poses generated from the visual odometry methods discussed in Section 2.3.2 are

only known up to a scale factor, the depths produced are similarly scale ambiguous.)

Nonetheless, we have a good deal of prior information about the world that we

can bring to bear to the problem. Firstly, we know that the world is locally smooth

and that scene geometry can often be well described using 2D surfaces. In addition,

36

certain environments of interest (e.g. man-made environments) are approximately

piecewise-planar. We can denoise the depth estimates computed above, or fill in

the depths in textureless regions, to reflect this prior information. Depth estimation

algorithms that attempt to do this are usually referred to as global methods.

The standard approach to applying spatial regularization to depth information is

to pose the problem as energy minimization [109, 111, 112, 93] where the regularized

solution must balance smoothness with fitting the input data:

𝐸(𝐷) = 𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝐷) + 𝜆𝐸𝑑𝑎𝑡𝑎(𝐷). (2.18)

The scalar term 𝜆 > 0 controls the tradeoff between smoothness and data fit. Usually

𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝐷) is some functional that penalizes non-smoothness, for example some norm

on the gradient ∇𝐷 (for discrete data, this could be approximated using forward or

central differences).

One way to derive the energy terms above is to define a probability distribution

over the depthmap pixels using a Markov Random Field (MRF) [53]. The Markov

properties of the MRF allow smoothness constraints to be introduced quite easily

by correlating neighboring depths. Inference can then be performed on the MRF

to extract the optimal depthmap using min-flow/max-cut-type algorithms [113, 105,

114, 115, 116].

A faster (but less robust) approach can be employed for the rectified two-frame

stereo case. Rectification is a common preprocessing step that warps the two images

such that all epipolar lines are parallel and aligned along the image rows. The epipo-

lar search can then be performed by walking along each image row independently.

Dynamic Programming can then be used to find the optimal association between the

left image row and the right image row [92, 117, 118, 119, 120].

The specific forms of the energy terms in Equation (2.18) can greatly impact the

reconstruction quality. For most types of regularization problems (i.e. not depth

regularization), a squared 𝐿2 norm for both 𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝐷) and 𝐸𝑑𝑎𝑡𝑎(𝐷) would be a

37

natural first choice, for example:

𝐸𝑑𝑎𝑡𝑎(𝐷) =

∫︁
Ω

||𝐷(u)− 𝑔(u)||2Σ 𝑑u (2.19)

𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝐷) =

∫︁
Ω

||∇𝐷(u)||2Σ0
𝑑u. (2.20)

Note that these functions essentially correspond to the special case of Gaussian mea-

surement model and Gaussian prior. There are two problems with this approach,

however. First, when applied to 𝐸𝑑𝑎𝑡𝑎(𝐷), the quadratic nature of the squared 𝐿2

norm makes the solution extremely sensitive to outliers or errors in the input data.

Second, when applied to 𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝐷), the solution is unable to undergo large discon-

tinuities, which are common for depth data (consider the edge between a near object

and the faraway background).

An alternative choice for 𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝐷) that is able to enforce smoothness but capture

large discontinuities was proposed by [121] and is commonly referred to as the Total

Variation (TV) regularizer:

𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝐷) =

∫︁
Ω

||∇𝐷(u)|| 𝑑u. (2.21)

By penalizing the 𝐿2 norm of the gradient (as opposed to the square of the 𝐿2 norm),

the TV regularizer allows functions to undergo sharp discontinuities (technically it

biases them to be piecewise constant). When combined with a squared 𝐿2 norm in

𝐸𝑑𝑎𝑡𝑎(𝐷), this approach is referred to as the TV-𝐿2 or Rudin-Osher-Fatemi (ROF)

model. One can replace the squared 𝐿2 data term with an 𝐿1 data term to add

robustness to outliers, which yields the TV-𝐿1 model, or replace the 𝐿2 norm in

𝐸𝑠𝑚𝑜𝑜𝑡ℎ with a Huber norm to yield the Huber-ROF model. A variety of optimiza-

tion schemes for objectives of this type have been proposed, typically leveraging the

Euler-Lagrange equation, non-smooth convex optimization, the proximal operator, or

primal-dual approaches [93, 122, 106, 123, 124, 125, 126].

With an understanding of both filtering and smoothing approaches to backend

optimization, as well as the generation of frontend factors through visual odometry

38

and depth estimation, we now transition to discussing full monocular SLAM pipelines

in Section 2.4.

2.4 Full Systems

This section will highlight important monocular SLAM pipelines, which combine the

building blocks from the preceding sections into fully functioning, real-time systems.

We first discuss sparse approaches in Section 2.4.1, where a sparse point cloud map is

solved for directly in the SLAM graph, before covering dense methods in Section 2.4.2

and semi-dense methods in Section 2.4.3, which separate the map reconstruction task

from the underlying SLAM backend.

2.4.1 Sparse Methods

The first monocular SLAM system to operate in real-time at camera framerate is

commonly attributed to [29], which used the EKF-SLAM backend described in Sec-

tion 2.2.1 with a sparse set of point landmarks initialized using Shi-Tomasi corners [74]

and tracked using an exhaustive SSD search inside an elliptical region determined by

the landmarks’ 3D uncertainty. While an important milestone, the approach suf-

fered from the shortcomings of EKF-SLAM outlined in Section 2.2.2 (e.g. the cubic

complexity of the EKF constrains the number of poses and landmarks that can be

estimated). In order to maintain real-time pose estimation, the mapping component

was scaled back such that only tens of landmarks are maintained by the filter at any

point in time. Filter-based approaches based on FastSLAM[61, 62] were also explored

by [127, 128].

The Parallel Tracking and Mapping (PTAM) algorithm developed by [30] side-

stepped the constraints imposed by filter-based approaches by splitting the tracking

(i.e. visual odometry) and mapping computations into separate threads that run

in parallel at different rates. This approach was a significant departure from the

state of monocular SLAM research at the time since it effectively allowed the least

squares/bundle adjustment techniques from offline SfM [22, 23, 25, 16, 24, 28, 26]

39

to be used in a real-time context. With tracking and mapping split into separate

threads, the least squares objective in Equation (2.10) can be solved efficiently in

parallel. In the tracking thread, the current camera pose is computed relative to

a past keyframe at framerate by holding the map points in Equation (2.10) fixed

and removing those that are outside the current view from the optimization. The

mapping thread can then optimize the full objective over the keyframe poses (a small

subset of all available frames) and the landmarks at a lower rate, which allows many

more landmarks to be considered. Compared to the tens of landmarks that the were

supported with approach of [29], PTAM is able to map thousands of points in desktop-

sized environments. The significance of this work is difficult to overstate as nearly all

monocular SLAM systems since follow this parallel approach.

ORB-SLAM developed by [31] is a recent improvement to the general PTAM

design that adds loop closure factors to constrain odometry drift along with several

techniques to perform SLAM graph management. The choice of factors in graph-based

SLAM has a significant impact on both tracking and mapping accuracy. In PTAM,

for example, odometry factors are added to the graph whenever a new keyframe is

initialized. If too few keyframes are created, tracking is likely to suffer since the

overlap between the current image and the keyframe is small. However, if too many

keyframes are created, then the backend least squares optimization can become pro-

hibitively slow. This same argument can be applied to the creation of landmarks: too

few and tracking may suffer, too many and the backend optimization be crawl to a

halt. ORB-SLAM’s solution to this problem is to liberally add both landmarks and

keyframe factors to SLAM graph, but prune the graph over time such that only a

small number of highly information points and poses remain. This allows for robust

tracking even through erratic camera motion or low-texture regions, but fast loop

closing and low drift as well.

Although technically not a full SLAM solution, the Semi-Direct Visual Odometry

(SVO) algorithm of [45] is worth mentioning as it is able to estimate poses extremely

efficiently (at up to 300Hz on a commodity laptop) and is one of the few approaches

to produce experimental results from running onboard an MAV. It is “semi-direct” in

40

that it uses a combination of raw pixel intensity patches of a sparse set of keypoints

in addition to point features.

2.4.2 Dense Methods

While the robust solutions to the sparse monocular SLAM problem such as ORB-

SLAM and others have led many to believe it is largely solved, the problem of dense

monocular SLAM is less mature, although key advances have been made in recent

years. The Dense Tracking and Mapping (DTAM) algorithm of [35] combines the

keyframe-based, parallel approach of PTAM with the horsepower of the GPU to

achieve impressive real-time results with both dense visual odometry and dense depth

estimation. Each keyframe in DTAM contains a 3D cost volume that samples a range

of inverse depths per pixel. The stereo matching costs for each hypothetical inverse

depth are aggregated across all subsequent frames. A smooth, minimum-cost surface

is then extracted from the cost volume using a variational regularization approach

by [126]. This smooth reconstruction is then used to densely track each new frame

using the coarse-to-fine Lucas-Kanade algorithm described in Section 2.3.2. This

approach has been extended in [129] which uses a non-local TV regularizer that

biases the solution to be piecewise-planar (instead of piecewise constant) and is thus

better able to interpolate over textureless regions like walls and floors..

The method of [38] takes the approach of densifying PTAM keyframes. For each

keyframe, a multi-view version of the stereo method described in [94] is used to

construct depthmaps which are then fused into a voxel-based representation called a

signed-distance function (SDF). Each voxel of the SDF records the distance to the

nearest surface. The surface itself can then be generated by extracting the zero-level

set of the function. Similar to DTAM, variation regularization is applied to enforce

surface smoothness.

REMODE developed by [37] uses a semi-direct visual odometry method [45] to

estimate camera poses and estimates keyframe depthmaps using a Bayesian filter

over each pixel that takes into account the probability of occlusions and outliers. The

depthmap is then smoothed using a variational regularizer that is weighted by the

41

confidence of each depth.

The MonoFusion algorithm [36] also uses a sparse monocular SLAM pipeline to

compute poses, but does not utilize keyframes for dense mapping. Instead, depthmaps

are computed for each image by performing a modified version of PatchMatch Stereo [130]

using variable baseline comparison images. The depthmaps are then fused into an

SDF using the method of [107] before the surface is extracted via raycasting. Unlike

the other methods mentioned, no explicit regularization is performed. The fusion

of depthmaps from every live image (as opposed from a smaller set of keyframes)

is enough to constraint the surface to be smooth. The MobileFusion algorithm [39]

extends MonoFusion to run at 25 Hz on a commodity smartphone, but sacrifices the

volume under reconstruction and other resolution parameters.

2.4.3 Semi-Dense Methods

Although the dense approaches outlined in Section 2.4.2 demonstrate impressive

reconstruction results, they are computationally expensive, often require high-end

GPUs to run in real-time, and are limited to small desk-sized or room-sized environ-

ments. Semi-dense methods sit in between sparse and dense approaches in terms of

computational efficiency, reconstruction quality, and map scale.

The Large-Scale Direct-SLAM (LSD-SLAM) algorithm [46, 47] estimates keyframe

depthmaps using a per-pixel probabilistic filter similar to [37], but only does so for

the high-gradient pixels. Since low-texture image regions are ignored, a significant

speedup can be obtained and a GPU is not required. Furthermore, since no volumetric

fusion is attempted, the scale of the reconstructed environments can be increased sub-

stantially. Once generated, the point clouds produced from the semi-dense keyframe

depthmaps are incrementally aligned using a least squares backend solver [54], but

with the poses defined in Sim(3) instead of SO(3) to account for scale drift. New im-

ages are tracked using the direct visual odometry approach described in Section 2.3.2

over the high-gradient pixels.

A similar approach was proposed in [48] that uses ORB-SLAM[31] internally to

compute poses, but then estimates a semi-dense depthmap for each keyframe. Each

42

keyframe depthmap is computed by performing a direct epipolar search in 𝑁 neighbor-

ing keyframes and probabilistically fusing the 𝑁 depth measurements measurements

before applying an inter-keyframe consistency check to remove outliers.

43

44

Chapter 3

Multi-Level Mapping

Despite the speed and scale that the semi-dense monocular SLAM algorithms de-

scribed in Chapter 2 provide, the resulting semi-dense point cloud maps do not accu-

rately capture the scene geometry — especially in low-texture image regions — and

thus are not yet applicable to high-speed MAV navigation. This chapter presents a

novel algorithm called Multi-Level Mapping (MLM) [9] that allows fully dense geom-

etry to be estimated online without the aid of a GPU, bringing MAV-capable dense

monocular SLAM one step closer to viability.

The key contribution of MLM is a multi-resolution depth estimation and spatial

smoothing process that exploits the correlation between low-texture image regions

and simple planar structure to adaptively scale the resolution of the generated recon-

struction to the quality of the input imagery. Image texture and depth are highly

correlated, with texture changes typically signaling depth discontinuities that occur

around objects in the scene. We exploit this correlation by making the reasonable

assumption that low-texture image regions are approximately planar and can be ac-

curately represented with more coarsely sampled depth estimates. High-texture im-

age regions are thus represented at higher resolutions to capture fine detail, while

low-texture regions are represented at coarser resolutions for smooth surfaces. This

approach allows for significant computational savings while simultaneously increasing

reconstruction density and quality when compared to the state-of-the-art.

45

SE3 Tracker

Image Stream Pose Graph

Point Cloud

Local Mapper

Figure 3-1: MLM Pipeline: Incoming images are first tracked in SE(3) relative to the
current keyframe using dense, direct image alignment. Tracked frames are then passed
to the Local Mapper, which estimates a quadtree-based, multi-resolution inverse
depthmap using many short-baseline stereo computations. Holes in the depthmap
are then filled before being interpolated back into the native image resolution using a
simple software rasterization procedure. When a keyframe is finished, it is passed to a
variational regularizer which removes outliers and smooths away noise. The keyframe
is then inserted into a pose-graph defined on Sim(3) and is incrementally aligned to
the other keyframes. Finally, the depthmaps are projected into 3D and visualized as
colored point clouds.

3.1 Algorithm Outline

This section briefly outlines the MLM dense monocular SLAM algorithm (see Fig-

ure 3-1). As a reminder, we wish to robustly estimate both the pose of a moving

monocular camera and a dense representation of the scene geometry using only the

camera’s image stream. The pipeline begins with a dense, direct visual odometry

frontend (see Section 2.3.2) that tracks the camera’s pose in SE(3) relative to a

past keyframe (Section 3.3). Once tracked, this image is then used to refine the

inverse depthmap of the keyframe (Section 3.4). Each keyframe is constructed us-

ing a variable-resolution data structure called a quadtree [131] such that the depth

estimates can exploit low-spatial-frequency information and can be intelligently dis-

tributed over the keyframe to both capture fine detail and increase density. Holes in

the variable-resolution keyframe depthmap are then filled to further increase density

(Section 3.5), before the depthmap is projected back to the native image scale us-

ing a triangulation and rasterization procedure (Section 3.6) for future tracking and

display. Before a new keyframe is created, a final round of spatial regularization is

performed on the old keyframe depthmap (Section 3.7). The keyframe is then added

to a pose-graph of keyframe depthmaps that are incrementally aligned over Sim(3)

46

using a sparse nonlinear least squares solver [54] and then displayed as point clouds

(Section 3.8).

3.2 Problem Formulation

In this section we will briefly outline the notation we will use to mathematically

describe the MLM approach (Section 3.2.1) and state the dense monocular SLAM

problem that it solves (Section 3.2.2).

3.2.1 Notation

We will represent grayscale images of size 𝑚×𝑛 pixels as scalar functions defined over

a 2D domain. The “live” image at discrete time 𝑙 will be represented by 𝐼𝑙 : Ω→ R+,

where Ω ⊂ R2 represents the image pixel domain.

We denote the pose of the current camera at time 𝑙 with respect to keyframe 𝑘

(up to the unobservable global scale factor) by transform

T𝑘
𝑙 =

⎡⎣R t

0 1

⎤⎦ ∈ SE(3), (3.1)

with rotation matrix R ∈ SO(3) and translation t ∈ R3. We let x̄ =
[︁
x𝑇 1

]︁𝑇
represent the homogeneous coordinates of vector x such that a point p𝑙 ∈ R3 in

frame 𝑙 can be transformed into frame 𝑘 by p̄𝑘 = T𝑘
𝑙 p̄𝑙.

The matrix K ∈ R3×3 will represent the camera intrinsic parameters. The per-

spective projection function will be defined as 𝜋

(︂[︁
𝑥 𝑦 𝑧

]︁𝑇)︂
=

[︁
𝑥/𝑧 𝑦/𝑧

]︁𝑇
. The

projection of point p𝑙 ∈ R3 into camera 𝑘 is therefore given by

u = 𝜋(KT𝑘
𝑙 p̄𝑙), (3.2)

where the de-homogenization is implied for notational clarity. We also define the

inverse projection function p = 𝜋−1(u, 𝑑) = ū/𝑑, which maps pixel u to 3D point p

47

with inverse depth 𝑑.

We define keyframe 𝐾𝑘 to be a tuple (S𝑊
𝑘 , 𝐼𝑘, 𝐷𝑘, 𝑉𝑘), where 𝐷𝑘 : Ω→ R+ is the

inverse depthmap associated with image 𝐼𝑘 (scaled to have a mean of 1) at the base

image level, and 𝑉𝑘 : Ω→ R+ is the associated map of inverse depth variances. Note

that only a subset of pixels Ω𝑘 ⊆ Ω will have valid inverse depth estimates due to the

absence of texture information, image noise, and outliers. S𝑊
𝑘 = (T𝑊

𝑘 , 𝑠𝑘) ∈ Sim(3)

is the pose T𝑊
𝑘 of the camera with respect to world frame 𝑊 (taken to be that of the

first keyframe) with scale factor 𝑠𝑘 > 0 that scales the geometry in 𝐷𝑘 appropriately.

We arrange the keyframes in a pose graph 𝒢 = (𝒱 , ℰ), where vertices 𝒱 = {𝐾𝑘}

is the set of keyframes and edges ℰ = {S𝑗
𝑖 ∈ Sim(3) : 𝐾𝑖, 𝐾𝑗 ∈ 𝒱} is the set of

odometry factors. Each S𝑗
𝑖 provides a measurement of the rigid body motion T𝑗

𝑖 and

scale factor 𝑠𝑗𝑖 > 0 that aligns the point clouds 𝜋−1(Ω𝑖, 𝐷𝑖(Ω𝑖)) and 𝜋−1(Ω𝑗, 𝐷𝑗(Ω𝑗)).

The projection of all the keyframe point clouds into 𝑊 will comprise our map.

3.2.2 Problem Statement

Here we state the dense monocular SLAM problem as described in Chapter 2. Given a

sequence of images 𝐼𝑙 from a moving camera, we would like to simultaneously estimate

the pose of the camera along with a map of the surrounding environment that we

represent as a graph of keyframes. Each keyframe will define an inverse depthmap

that can be projected into 3D space as a point cloud that will denote structure in the

environment. Our goal is thus to estimate online:

∙ The current camera pose T𝑘
𝑙 relative to the current keyframe 𝐾𝑘 (Section 3.3)

∙ The inverse depthmap 𝐷𝑘 for the current keyframe 𝐾𝑘 (Sections 3.4 to 3.7)

∙ The optimal keyframe poses {S𝑗
𝑖} for keyframe graph 𝒢 (Section 3.8).

While the above quantities are interdependent, we follow the parallelized approach

of PTAM [30] and decouple their computations, solving for each component in a

separate thread.

48

Furthermore, we focus our attention on improving the quality of the depthmap

𝐷𝑘 (which in turn affects the estimates T𝑘
𝑙 and S𝑊

𝑘). State-of-the-art approaches such

as LSD-SLAM [47] only estimate depth for regions of Ω with high-image gradient,

and are unable to interpolate through low-texture regions, resulting in point cloud

maps with undesirable holes (that is |Ω𝑘| ≪ |Ω|). Our primary contribution will be to

increase the fraction of each keyframe with valid depth estimates (i.e. increase |Ω𝑘|),

while also increasing the accuracy of 𝐷𝑘, through a multi-resolution depth estimation

process using quadtrees [131].

3.3 Tracking on SE(3)

We use the coarse-to-fine image alignment method of [47] for tracking in SE(3) be-

tween keyframe 𝐾𝑘 and the current image 𝐼𝑙, with the addition of a global illumination

term to account for lighting variation between frames as in [132]. With the increased

density of our keyframes, we also use all available pixels for tracking, not just those

with high-image gradient at the finest image scale as in [47].

For each incoming frame 𝐼𝑙, we estimate T𝑘
𝑙 by minimizing the following robust

nonlinear least squares objective:

𝐸(T𝑘
𝑙) =

∑︁
u∈Ω𝑘

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒𝑟2𝑝(u,T𝑘

𝑙)

𝜎2
𝑟𝑝(p,T𝑘

𝑙)

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
𝜖

(3.3)

where || · ||𝜖 is the (scalar) Huber norm defined as

||𝑥||𝜖 =

⎧⎪⎨⎪⎩
𝑥2

2𝜖
if |𝑥| ≤ 𝜖

|𝑥| − 𝜖
2

otherwise.
(3.4)

The Huber norm is used to minimize the “staircasing” effect that is common with 𝐿1

error metrics [126]. Near zero, the Huber norm acts like a squared-𝐿2 cost, which

reduces the penalty for small variations. Away from zero, however, it acts like an 𝐿1

cost, which reduces the effect of outliers on the solution.

49

The photometric residual 𝑟𝑝 is the pixel intensity error incurred when pixel u in

the keyframe image 𝐼𝑘 is projected into the current image 𝐼𝑙 assuming inverse depth

𝐷𝑘(u) and relative pose T𝑘
𝑙 . Its specific form is given by

𝑟𝑝(u,T
𝑘
𝑙) = 𝐼𝑘(u)− 𝐼𝑙(𝜋(Kp))− 𝑟1/2 (3.5)

p = T𝑙
𝑘K

−1𝜋−1(u, 𝐷𝑘(u)), (3.6)

where p is the projected 3D point of pixel u from the keyframe into the new frame

assuming inverse depth 𝐷𝑘(u). The 𝑟1/2 term is the median photometric residual

across all pixels and serves to remove global illumination changes from the cost [132].

If the global illumination of the scene changes between 𝐼𝑘 and 𝐼𝑙, the minimum pho-

tometric residual will no longer lie near zero, which can bias the solution. Removing

the median residual, however, recenters the distribution of the errors around zero.

The 𝜎2
𝑟𝑝(p,T𝑘

𝑙)
term is the variance of the photometric residual 𝑟𝑝 obtained by

propagating the inverse depth variance 𝑉𝑘(u) into the residual space:

𝜎2
𝑟𝑝(p,T𝑘

𝑙)
= 2𝜎2

𝐼 +

(︂
𝜕𝑟𝑝(u,T

𝑘
𝑙)

𝜕𝐷𝑘(u)

)︂2

𝑉𝑘(u), (3.7)

where 𝜎2
𝐼 is a user-set pixel intensity noise based on the characteristics of the camera.

We minimize Equation (3.3) by performing iteratively reweighted least squares

(IRLS) (sometimes known as M-estimation or robust regression), which approximates

the robust cost using a weighted nonlinear least squares objective. This approximation

is then optimized using Gauss-Newton [27]. The weights are adjusted on each iteration

such that the true, robust objective is minimized. We perform the optimization in a

coarse-to-fine fashion, with solutions at coarser levels of the image pyramid used to

initialize finer levels.

After convergence, we use the newly tracked frame (𝐼𝑙,T
𝑘
𝑙) to update the depthmap

𝐷𝑘 and variances 𝑉𝑘 of 𝐾𝑘 as described in the next sections.

50

Figure 3-2: Each keyframe image 𝐼𝑘 (left) is converted to a multi-resolution repre-
sentation 𝑞𝐼𝑘 (right) using quadtrees [131]. 𝐼𝑘 is first converted to a standard 𝐿-level
power-of-two images pyramid 𝐿𝐼𝑘. If this pyramid is interpreted as a tree structure,
clipping subtrees with similar pixel intensities yields the quadtree 𝑄𝐼𝑘. The leaves of
this tree are then extracted to yield 𝑞𝐼𝑘. This multi-resolution data structure com-
presses low-texture regions as single pixels by representing them at a coarser image
resolution.

3.4 Depth Estimation using Quadtree Keyframes

With the pose of the current camera relative to previous keyframe T𝑘
𝑙 computed, the

images (𝐼𝑘, 𝐼𝑙) now form a stereo1 pair that we use to update the inverse depthmap

𝐷𝑘. We follow the depth estimation method in [46], but perform stereo computations

at multiple image scales to increase the density of the depthmap without sacrificing

speed.

The approach in [46] may be considered a single-level approach because all stereo

computations are performed at a single image scale (the native image resolution). As

depicted in Figure 3-3, low-texture image regions are difficult to reconstruct using a

single image scale because low spatial frequency information is ignored. Our multi-

level approach, on the other hand, is able to estimate depth for low-texture pixels by

performing the epipolar search at coarser image scales, where low spatial frequency

information may be leveraged to guide the matching process (see Figure 3-4).

For each stereo pair (𝐼𝑘, 𝐼𝑙) we compute standard 𝐿-level power-of-two image pyra-

mids that we denote (𝐿𝐼𝑘,
𝐿𝐼𝑙). We interpret these pyramids as tree data structures,

1Stereo in this case is across pairs of successive monocular images, rather than simultaneous
images from binocular cameras. We follow [46, 47], and others in using the term “stereo” for this
monocular image processing.

51

Figure 3-3: Single-level Depth Estimation: The depth estimation method of [46, 47]
depicted above computes depth only for high-gradient pixels in each keyframe image
𝐼𝑘, which leaves undesirable holes in the reconstruction. Depth for low-texture regions
(such as the indicated pixel on the left) are not able to be estimated because no
gradient information is present in the epipolar search region in 𝐼𝑙 (shown on the right
in green) to indicate a match.

Figure 3-4: Multi-level Depth Estimation: We perform stereopsis at the image scale
appropriate for the available texture. For each keyframe 𝐼𝑘 we compute a quadtree-
compressed representation 𝑞𝐼𝑘 based on the pixel intensities and define an inverse
depthmap over the leaf nodes (left). For each newly tracked frame 𝐼𝑙, we compute
its power-of-two image pyramid 𝐿𝐼𝑙 and perform small-baseline stereo computations
between nodes in 𝑞𝐼𝑘 and pixels in 𝐿𝐼𝑙 at the image scale corresponding to the given
node (right). Compare the epipolar search region in 𝐼2𝑙 for the highlighted low-texture
pixel with that shown in Figure 3-3. By performing the search at a coarser image
scale, lower frequency information is available to constrain the match.

52

with each parent pixel (or node) connected to four child nodes at a finer image scale.

We then transform 𝐿𝐼𝑘 into a quadtree 𝑄𝐼𝑘 by identifying sub-trees of 𝐿𝐼𝑘 with similar

pixel intensities and clipping them from the tree [131]. We extract the leaf nodes of
𝑄𝐼𝑘 and refer to them as 𝑞𝐼𝑘 (see Figure 3-2).2 If we let 𝐼 𝑙𝑘 : Ω𝑙 → R+ represent

the 𝑙th image level in the full pyramid 𝐿𝐼𝑘, node 𝑖 ∈ 𝑞𝐼𝑘 comprises a pixel location

u𝑖 ∈ Ω𝑙𝑖 with intensity 𝐼 𝑙𝑖𝑘 (u𝑖), where 𝑙𝑖 is the pyramid level index. We then define

a corresponding inverse depthmap 𝑞𝐷𝑘 with variances 𝑞𝑉𝑘 and perform updates on

this representation before projecting the depths back to the full-resolution 𝐷𝑘 (see

Section 3.6).

To update the depth 𝑞𝐷𝑘(𝑖) for node 𝑖 ∈ 𝑞𝐼𝑘, we check the magnitude of the

image gradient ∇𝐼 𝑙𝑖𝑘 (u𝑖). If the magnitude falls below a threshold (e.g. 5), we skip

the update. If the gradient is sufficient, we search along the epipolar line defined

by T𝑘
𝑙 in image 𝐼 𝑙𝑖𝑙 for a matching pixel u*

𝑖 (see Figure 3-4).3 The number of

disparities searched along this line corresponds to the ±2𝜎 inverse depth interval

induced from the prior inverse depth variance 𝑞𝑉𝑘(u𝑖). Matches are determined using

sum-of-squared-differences (SSD) along a 5-sample window with a ratio test to ensure

a unique match.

If a match u*
𝑖 is found along the epipolar line, we compute the depth z𝑖 that the

association (u𝑖,u
*
𝑖) induces via triangulation. We then compute a variance 𝜎2

𝑖 for

this “measurement” according to the noise model in [46], which is composed of two

terms based on the two primary sources of error in the measurement: (1) error in

the epipolar line due to imperfect pose information and (2) error in the match u𝑖

due to noise in the raw pixel values along the epipolar line. The new inverse depth

measurement (z𝑖, 𝜎
2
𝑖) is then fused with the prior inverse depth estimate 𝑞𝐷𝑘(𝑖) and

2An equivalent construction of 𝑞𝐼𝑘 would be to take 𝐼𝑘 and recursively merge pixel neighborhoods
with similar intensities into single pixels defined at coarser image scales.

3Note that the comparison is performed between the quadtree leaf nodes of the keyframe im-
age and the full image pyramid for the incoming frame. We do not need to compute a quadtree
representation for the incoming frame.

53

𝑞𝑉𝑘(𝑖) via the standard Bayesian update equations:

𝑞𝐷𝑘(𝑖)← z𝑖
𝑞𝑉𝑘(𝑖) + 𝑞𝐷𝑘(𝑖)𝜎2

𝑖
𝑞𝑉𝑘(𝑖) + 𝜎2

𝑖

(3.8)

𝑞𝑉𝑘(𝑖)←
𝑞𝑉𝑘(𝑖)𝜎2

𝑖
𝑞𝑉𝑘(𝑖) + 𝜎2

𝑖

. (3.9)

We also keep track of the number of successful observations for each node and do not

initiate the epipolar search if this number drops below a threshold (that is we mark

the node as “invalid”).

Our approach performs a similar number of stereo computations per keyframe as

that of [46], but is able to more effectively “cover” the keyframe with inverse depth

estimates by representing lower-texture image regions with coarser resolution pixels.

We perform stereo computations at the image scale appropriate for the available

texture, by which we are able to increase the density of the keyframe depthmap 𝐷𝑘

after projecting the depths in 𝑞𝐷𝑘 back to full-resolution. Image texture and depth

are highly correlated, with texture changes typically signaling depth discontinuities

that occur around objects in the scene. We exploit this correlation by making the

reasonable assumption that low-texture image regions are approximately planar and

can be accurately represented with more coarsely sampled depth estimates.

After the inverse depths for each node in the multi-level depthmap are updated,

we attempt to fill the holes in the depthmap created by invalid nodes as described in

Section 3.5.

3.5 Hole-Filling

Although the multi-level depth estimation approach described in Section 3.4 aims

to recover depth even in low-texture image regions, the epipolar search as shown

in Figure 3-4 may still fail to produce a match due to image noise and outliers,

in addition to the limitations imposed by a finite epipolar search region and finite

number of pyramid levels. If the stereo computation at node 𝑖 ∈ 𝑞𝐼𝑘 has failed

repeatedly, however, we may still infer its depth by considering its spatial neighbors

54

(leveraging the assumption that the world is smooth and that the inverse depths of

spatial neighbors are correlated). If the number of successful stereo observations for

the spatial neighbors of 𝑖 exceeds a threshold, we re-initialize 𝑞𝐷𝑘(𝑖) to be the mean of

the estimates of its neighbors, weighted by the variance of each estimate, and attempt

the stereo search again at the next incoming frame. This hole-filling procedure helps

to increase the density of 𝑞𝐷𝑘 and ensure that as many pixels as possible have depth

estimates. After a round of hole-filling, we project 𝑞𝐷𝑘 back to the full-resolution 𝐷𝑘,

as described in Section 3.6, which is then passed to the tracking frontend described

in Section 3.3.

3.6 Triangulation and Rasterization

We perform depthmap updates on the variable resolution representation 𝑞𝐷𝑘 to enable

spatial regularization and hole filling, but need to track the next incoming image and

display point clouds using the best full-resolution keyframe depthmap we can infer

so far. Thus, at each timestep, we take the current variable resolution keyframe

depthmap 𝑞𝐷𝑘 and recover the native resolution depthmap 𝐷𝑘.

For each pixel u ∈ Ω at native resolution, we approximate 𝐷𝑘(u) by linearly inter-

polating among the depth estimates at nearby quadtree leaves in 𝑞𝐷𝑘 using a simple

triangulation and rasterization scheme. This kind of interpolation is not strictly nec-

essary, but assigning the same depth to all full-resolution pixels corresponding to a

leaf node in 𝑞𝐷𝑘 leads to unnecessarily quantized or “blocky” depthmaps (this is effec-

tively a piecewise constant approximation versus a piecewise linear approximation).

The interpolation scheme then raises the question of which quadtree leaves are neigh-

bors to a particular full-resolution pixel u, and we use a simple triangulation scheme

to determine the neighbors [133].

Given a triangulation of 𝑞𝐷𝑘, we linearly interpolate between the multi-level

depth4 estimates using software rasterization accelerated by single-instruction-multiple-

data (SIMD) instructions to fill in 𝐷𝑘 (see Figure 3-5). We compute a new interpo-

4Note that we linearly interpolate the depths associated with each node, not the inverse depths.

55

(a) Triangulation (b) Rasterization

Figure 3-5: We triangulate the locations of our multi-resolution quadtree inverse
depthmap using a single pass over the full-resolution pixels (a). We then interpolate
the depth values between node locations using software rasterization to generate a
piecewise linear depthmap (b).

lated depthmap for every mapping iteration to pass to the SE(3) tracker. However,

we use a variational regularizer described in the next section to remove outliers and

smooth away noise before Sim(3) alignment and point cloud display.

3.7 Spatial Regularization

The multi-resolution inverse depthmap 𝑞𝐷𝑘 computed in Section 3.4 may be corrupted

by noise as well as outliers from false-matches that can degrade map quality. Before

we finalize a keyframe and pass its depthmap to the pose-graph optimization backend,

we apply a variational regularizer to remove the outliers and smooth away noise (see

the overview of spatial regularization approaches in Section 2.3.3).

Assuming the quadtree-compressed keyframe image 𝑞𝐼𝑘 contains 𝑁 nodes, we first

arrange 𝑞𝐷𝑘 into a vector in R𝑁
+ :

z =
[︁
𝑞𝐷𝑘(1) . . . 𝑞𝐷𝑘(𝑁)

]︁𝑇
∈ R𝑁

+ . (3.10)

We then let the vector 𝜉 ∈ R𝑁
+ denote the regularized solution and minimize the

56

following convex objective function:

𝐸(𝜉) = 𝑇𝑉𝜖(𝜉) + 𝜆||W(𝜉 − z)||1, (3.11)

where 𝑇𝑉𝜖(𝜉) is the Total Variation-Huber norm, 𝜆 is a scale-factor that sets the

influence of the 𝐿1 data-term (in experiments set to 0.005), and W is a diagonal

weighting matrix. The Total Variation-Huber norm promotes smooth solutions while

preserving edges and the weighted 𝐿1 data-term reduces the effect of outliers in z.

The minimization of Equation (3.11) is performed using the first-order primal-dual

algorithm of [126], which will be described shortly. While this approach is typically

implemented on a GPU [35, 37, 38], we find that when running in a separate thread

and operating on our quadtree-compressed depthmap, our version runs sufficiently

fast for real-time operation on a CPU. After a new keyframe is triggered (based on

the euclidean and angular distance to the last keyframe), we run our regularizer for a

fixed number of iterations on the outgoing depthmap before passing it to the tracker

(Section 3.3) and pose-graph optimizer (Section 3.8).5

As described in Section 2.3.3, the Total Variation-Huber norm for a continuous

(and differentiable) scalar function over the image domain 𝑓 : Ω→ R is defined as

𝑇𝑉𝜖(𝑓) =

∫︁
Ω

||∇𝑓(u)||𝜖 𝑑u, (3.12)

where the (isotropic) multi-dimensional Huber norm is defined as

||x||𝜖 =

⎧⎪⎨⎪⎩
||x||22
2𝜖

if ||x||2 ≤ 𝜖

||x||2 − 𝜖
2

otherwise.
(3.13)

If the vector of inverse depth estimates 𝜉 ∈ R𝑁
+ is interpreted as 𝑁 point samples

of an underlying continuous function 𝜉 : Ω→ R+, the discrete analog of Equation 3.12

5We find that running the regularizer after the depth estimation process is complete produces
better results than applying the regularization in parallel, before the depths have converged.

57

is given by

𝑇𝑉𝜖(𝜉) =
𝑁∑︁
𝑖=1

||∇𝜉(u𝑖)||𝜖. (3.14)

Note, however, that the set of gradient vectors
[︁
∇𝜉(u1) . . . ∇𝜉(u𝑁)

]︁
∈ R2𝑁 can

be approximated as the output of a linear operator D : R𝑁 → R2𝑁 such that

D𝜉 ≈
[︁
∇𝜉(u1) . . . ∇𝜉(u𝑁)

]︁
∈ R2𝑁 . (3.15)

The discrete Total Variation-Huber norm can then be written as

𝑇𝑉𝜖(𝜉) =
𝑁∑︁
𝑖=1

|| [D𝜉]𝑖 ||𝜖 (3.16)

= ||D𝜉||𝜖, (3.17)

where the last line follows a common abuse of notation (the Huber norm is applied

to each individual gradient vector in R2, not the set of 𝑁 such vectors in R2𝑁).

If the sampling of 𝜉 to form 𝜉 were uniform over the 2D image domain Ω, D

could simply be the sparse matrix that encodes the standard horizontal and vertical

forward differences:

∇𝜉(u𝑖,𝑗) ≈ [D𝜉]𝑖,𝑗 (3.18)

=

⎡⎣𝜉𝑖+1,𝑗 − 𝜉𝑖,𝑗

𝜉𝑖,𝑗+1 − 𝜉𝑖,𝑗

⎤⎦ . (3.19)

In our case, we must modify D such that the horizontal and vertical derivatives

are approximated on our variable-scale 𝜉. As shown in Figure 3-6, each element of

𝜉 corresponds to a square region of pixels at full-resolution. We approximate the

derivative in each direction by simply averaging the forward differences between a

58

(a) Horizontal Neighbors (b) Vertical Neighbors

Figure 3-6: Discrete derivative computation: We approximate the discrete derivative
at node 𝜉𝑖 in our multi-level inverse depthmap using forward-differences with the
node’s (a) horizontal and (b) vertical neighbors.

node and the nodes bordering its square region:

∇𝜉(u𝑖) ≈

⎡⎢⎣
∑︀|𝒩ℎ(𝜉𝑖)|

𝑗=1 𝒩ℎ
𝑗 (𝜉𝑖)

|𝒩ℎ(𝜉𝑖)| − 𝜉𝑖∑︀|𝒩𝑣(𝜉𝑖)|
𝑗=1 𝒩 𝑣

𝑗 (𝜉𝑖)

|𝒩 𝑣(𝜉𝑖)| − 𝜉𝑖,

⎤⎥⎦ (3.20)

where 𝒩 ℎ(𝜉𝑖) and 𝒩 𝑣(𝜉𝑖) denote the horizontal and vertical neighbors of 𝜉𝑖, respec-

tively. The differences should technically be weighted by their distance from u𝑖, but

we found that it did not affect the approximation significantly. Note again that this

computation can be encoded in a sparse matrix operator.

The diagonal weighting matrix W = diag (𝑤1, . . . , 𝑤𝑁) incorporates the depth

uncertainty into the data term and is defined as

𝑤𝑖 =

⎧⎪⎨⎪⎩
0 if no stereo match found

1√
𝑞𝑉𝑘(𝑖)

otherwise.
(3.21)

With this set of weights, the regularized solution will be penalized more severely for

deviating from depth estimates with low uncertainty. In the case where no stereo

match has been found for a node, the weight placed on the data term is 0, meaning

59

the smoothing term will dominate.

To derive the update equations to minimize (3.11), we first compute a dual repre-

sentation of 𝑇𝑉𝜖(𝜉) called the convex conjugate (also known as the Legendre-Fenchel

transform) [134]. For a scalar function 𝑓 : R𝑁 → R, the convex conjugate function

𝑓 * : R𝑁 → R is defined as

𝑓 *(q) = max
x

q𝑇x− 𝑓(x), (3.22)

for dual variable q ∈ R𝑁 . This operation essentially describes 𝑓 in terms of its

supporting hyperplanes. Note that 𝑓 * is convex (no matter the convexity of 𝑓) because

it is the pointwise maximum of a set of affine functions in q. However if 𝑓 is convex

and closed (i.e. its sublevel sets are closed), then it can be reconstructed from its

conjugate function:

𝑓(x) = max
q

x𝑇q− 𝑓 *(q). (3.23)

In this case, one can see that 𝑓 is obtained by taking the conjugate of the conjugate

function 𝑓 *.

The convex conjugate for the Huber norm 𝑓(x) = ||x||𝜖 can be derived by comput-

ing the conjugate functions for its squared-𝐿2 and 𝐿2 components separately. Taking

the squared-𝐿2 component first, when ||x||2 ≤ 𝜖 we have

𝑓 *(q) = max
x

q𝑇x− 1

2𝜖
||x||22. (3.24)

After setting the derivative of q𝑇x − 1
2𝜖
||x||22 to zero, the maximum is obtained at

x* = 𝜖q. After substituting for x, this yields

𝑓 *(q) =
𝜖

2
q𝑇q for ||q||2 ≤ 1. (3.25)

60

Now considering the 𝐿2 component when ||x||2 > 𝜖, we have

𝑓 *(q) = max
x

q𝑇x− ||x||2 +
𝜖

2
. (3.26)

While q𝑇x − ||x||2 + 𝜖/2 is not differentiable, we may still easily reason about its

maximum. Ignoring the constant 𝜖/2 for a moment, note that if ||q||2 < 1, then the

plane defined by q𝑇x is a supporting hyperplane of ||x||2 with the contact point at

x = 0. This implies that q𝑇x ≤ ||x||2 for all x ∈ R𝑁 , with equality only attained at

x = 0, and thus

max
x

q𝑇x− ||x||2 + 𝜖/2 = 𝜖/2. (3.27)

If ||q||2 > 1, however, then q𝑇x can be arbitrarily greater than ||x||2 and

max
x

q𝑇x− ||x||2 + 𝜖/2 =∞. (3.28)

Thus the conjugate function for the 𝐿2 component when ||x||2 > 𝜖 is given by

𝑓 *(q) = 𝛿𝑄(q) +
𝜖

2
for ||q||2 > 1, (3.29)

where the indicator function 𝛿𝑄(q) for 𝑄 = {q : ||q||2 ≤ 1} is defined as

𝛿𝑄(q) =

⎧⎪⎨⎪⎩0 if q ∈ 𝑄

∞ otherwise.
(3.30)

Now combining the conjugate functions for the squared-𝐿2 and 𝐿2 components we

finally have

𝑓 *(q) =
𝜖

2
q𝑇q + 𝛿𝑄(q), (3.31)

61

which can be used to reconstruct the Huber norm:

||x||𝜖 = max
q

q𝑇x− 𝜖

2
q𝑇q− 𝛿𝑄(q). (3.32)

The Total Variation-Huber norm of 𝜉 is simply a sum of 𝑁 such functions:

𝑇𝑉𝜖(𝜉) =
𝑁∑︁
𝑖=1

max
q𝑖

q𝑇
𝑖 [Dx]𝑖 −

𝜖

2
q𝑇
𝑖 q𝑖 − 𝛿𝑄𝑖

(q𝑖) (3.33)

= max
q

q𝑇D𝜉 − 𝜖

2
q𝑇q− 𝛿𝑄(q) (3.34)

using the dual variable q =
[︁
q𝑇
1 . . . q𝑇

𝑁

]︁𝑇
∈ R2𝑁 and set 𝑄 = {q ∈ R2𝑁 : ||q𝑖||2 ≤

1 for 𝑖 = 1, . . . , 𝑁}.

Substituting this representation into the cost in Equation (3.11), our objective

can be written in primal-dual form

min
𝜉

max
q

q𝑇D𝜉 + 𝐺(𝜉)− 𝐹 *(q), (3.35)

where we follow the notation of [126] and define

𝐺(𝜉) = ||W(𝜉 − z)||1 (3.36)

𝐹 *(q) =
𝜖

2
q𝑇q + 𝛿𝑄(q). (3.37)

The intuition behind the optimization approach outlined in [126] will be to perform

gradient ascent steps in q followed by gradient descent steps in 𝜉. However, since

neither 𝐺 nor 𝐹 * is differentiable, we will need to generalize the gradient steps via

the proximal operator [135]. For a proper convex function 𝑓 : R𝑁 → R that is also

closed, the proximal operator is defined as

prox𝜆𝑓 (y) = argmin
x

𝑓(x) +
1

2𝜆
||x− y||22. (3.38)

When 𝑓 is differentiable, this operation is essentially a gradient descent step with

62

step size 𝜆:

prox𝜆𝑓 (y) ≈ y − 𝜆∇𝑓(x). (3.39)

Following [126], the primal-dual update steps are then given by:

q𝑛+1 = prox𝛼q,𝐹 *(q𝑛 + 𝛼qD𝜉) (3.40)

𝜉𝑛+1 = prox𝛼𝜉,𝐺
(𝜉𝑛 − 𝛼𝜉D

𝑇q𝑛+1) (3.41)

𝜉𝑛+1 = 𝜉𝑛+1 + 𝜃(𝜉𝑛+1 − 𝜉𝑛). (3.42)

for step sizes 𝛼𝜉, 𝛼q > 0. The last line denotes an extragradient step with step size

𝜃 ∈ [0, 1].

The proximal operators for 𝐺 and 𝐹 * in Equation (3.35) are given pointwise by

prox𝛼𝜉,𝐺
(𝑥𝑖) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑥𝑖 − 𝜆𝑤𝑖𝛼𝜉 if 𝑥𝑖 − 𝑧𝑖 > 𝜆𝛼𝜉𝑤𝑖

𝑥𝑖 + 𝜆𝑤𝑖𝛼𝜉 if 𝑥𝑖 − 𝑧𝑖 < −𝜆𝛼𝜉𝑤𝑖

𝑧𝑖 if |𝑥𝑖 − 𝑧𝑖| ≤ 𝜆𝛼𝜉𝑤𝑖

(3.43)

prox𝛼q,𝐹 *(𝑦𝑖) =

𝑦𝑖
1+𝛼q𝜖

max{1, || 𝑦𝑖
1+𝛼q𝜖

||2}
. (3.44)

After convergence, we copy 𝜉 back to 𝑞𝐷𝑘 and rasterize the solution to obtain

the smoothed depthmap 𝐷𝑘, which is then incrementally aligned with overlapping

keyframes in our pose-graph optimization backend and displayed (see Section 3.8).

3.8 Pose-graph Optimization on Sim(3)

Similar to the SE(3) tracking front-end described in Section 3.3, we use the robust

image and depth alignment method of [47] for generating constraints in our Sim(3)

pose-graph 𝒢 = (𝒱 , ℰ) in order to estimate the optimal keyframe poses S𝑊
𝑘 and point

cloud.

When keyframe 𝐾𝑘 is finalized, it is added to the vertex set 𝒱 and a set of potential

63

neighbor keyframes 𝒞 ⊆ 𝒱 ∖ 𝐾𝑘 is generated through a search of predecessors in 𝒱

and an appearance-based loop-closure detector [136].

For each 𝐾𝑗 ∈ 𝒞, transforms S𝑗
𝑘,S

𝑘
𝑗 ∈ Sim(3) linking 𝐾𝑘 and 𝐾𝑗 are computed

using the Sim(3) tracking method described below. If S𝑗
𝑘 and S𝑘

𝑗 are consistent with

each other, they are added to the constraint set ℰ . 𝒢 is then refined online using a

sparse Levenberg-Marquardt least squares solver in the software package g2o [54] to

produce the optimal keyframe pose S𝑊
𝑘 , which we use to project 𝐷𝑘 into the world

frame 𝑊 .

Tracking on Sim(3) is achieved using iteratively reweighted least squares (IRLS)

as in Section 3.3, with the cost function from 3.3 modified to include the residual 𝑟𝑑

between the two inverse depthmaps 𝐷𝑗 and 𝐷𝑘:

𝐸(S𝑗
𝑘) =

∑︁
u∈Ω𝑘

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒𝑟2𝑝(u,S

𝑗
𝑘)

𝜎2
𝑟𝑝(p,S

𝑗
𝑘)

+
𝑟2𝑑(u,S

𝑗
𝑘)

𝜎2
𝑟𝑑(p,S

𝑗
𝑘)

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
𝜖

(3.45)

𝑟𝑑(u,S
𝑗
𝑘) = [p]−1

𝑧 −𝐷𝑗(𝜋(Kp)) (3.46)

p = S𝑗
𝑘K

−1𝜋−1(u, 𝐷𝑘(u)). (3.47)

Here we can see that the inverse depth residual is computed by projecting pixel u into

frame 𝑗 using inverse depth 𝐷𝑘(u) and S𝑗
𝑘 and computing the difference between the

new inverse depth in this frame and that given by 𝐷𝑗. The variance for the residual is

computed by propagating the inverse depth variances through the residual function:

𝜎2
𝑟𝑑(u,S

𝑗
𝑘)

= 𝐽2
𝑘𝑉𝑘(u) + 𝐽2

𝑗 𝑉𝑗(𝜋(Kp)) (3.48)

𝐽𝑘 =
𝜕𝑟𝑑(u,S

𝑗
𝑘)

𝜕𝐷𝑘(u)
(3.49)

𝐽𝑗 =
𝜕𝑟𝑑(u,S

𝑗
𝑘)

𝜕𝐷𝑗(𝜋(p))
. (3.50)

3.9 Summary

This chapter described the MLM dense monocular SLAM algorithm in detail. MLM

maintains a map composed of a set of keyframe inverse depthmaps arranged in a

64

graph. Each inverse depthmap is defined on a multi-resolution data structure called

a quadtree [131] that allows the depth estimation process to exploit the correlation

between low-texture image regions and simple planar structure to adaptively scale the

complexity of the depthmap to the quality of the input imagery. High-texture image

regions are represented at higher resolutions to capture fine detail, while low-texture

regions are represented at coarser resolutions for smooth surfaces.

Given a live image stream, incoming images are tracked in SE(3) relative to the

current keyframe using dense, direct image alignment (Section 3.3) before being used

to refine the multi-resolution inverse depthmap of the current keyframe (Section 3.4).

Holes in the variable-resolution keyframe depthmap are then filled to further increase

density (Section 3.5), before the depthmap is projected back to the native image scale

using a triangulation and rasterization procedure (Section 3.6) for future tracking

and display. Before a new keyframe is created, a final round of spatial regularization

is performed on the old keyframe depthmap (Section 3.7). The keyframe is then

added to the graph of keyframe depthmaps that are incrementally aligned over Sim(3)

using a sparse nonlinear least squares solver [54] and then displayed as point clouds

(Section 3.8).

This approach allows for significant computational savings while simultaneously

increasing reconstruction density and quality when compared to the state-of-the-art.

A qualitative and quantitative evaluation of MLM compared to LSD-SLAM [47] will

be presented in Chapter 4.

65

66

Chapter 4

Evaluation

In this chapter, the tracking and reconstruction performance of the MLM algorithm

described in Chapter 3 is evaluated qualitatively using video captured from a hand-

held camera as well as quantitatively on publicly available benchmark datasets [137].

The MLM implementation is based off the LSD-SLAM source code.1 All processing

was done in real time on a consumer laptop with an Intel Core i7 processor with 4

hyperthreaded cores and 8 GB of RAM. All metrics were computed using the raw

inverse depthmaps, however, a maximum depth threshold of 1-2 units2 was used for

display purposes.

4.1 Qualitative Evaluation

Several 2-4 minute video sequences were captured using a global shutter Point Grey

Firefly color camera with a resolution of 640x480 pixels and 30 Hz frame-rate. The

first small-scale sequence was recorded in a roughly 2 m2 office area and is shown

in Figure 4-1a. Note the accurate reconstructions of high-texture regions around the

desk. The second sequence was recorded in a 50 m2 outdoor area near a set of benches

shown in Figure 4-1b. The final sequence was captured inside a 50 m2 laboratory test

1https://github.com/tum-vision/lsd_slam
2As described in Chapter 3, the inverse depthmaps are normalized to have a mean of 1. The

scale factor of each Sim(3) keyframe pose is responsible for scaling the point clouds such that they
align in the world frame.

67

(a) Desk dataset.

(b) Bench dataset.

Figure 4-1: We demonstrate the quality of our reconstructions on several datasets
recorded using a handheld camera: (a) shows the final point cloud map from a small
desk scene, while (b) shows the map from an outdoor bench area. All processing was
performed in real-time on a consumer laptop.

space and is shown in Figure 4-2. These examples show how our multi-level approach

is able to interpolate through low-texture regions such as the ground and walls.

68

Figure 4-2: Our multi-level depth estimation and spatial regularization process en-
ables dense point cloud maps to be generated online without GPU acceleration. This
point cloud was generated in real-time from approximately two minutes of 30 Hz
video around a laboratory workspace.

69

Tracking Accuracy [RMSE]
Pos. [m] Angle [deg]

Dataset LSD-SLAM MLM LSD-SLAM MLM
fr2/desk 2.1 0.15 88 4.8
fr3/long_office_household 2.1 0.65 68 11
fr3/nostructure_texture_near_withloop 0.28 0.22 3.7 2.6
fr3/structure_texture_far 0.22 0.17 2.3 0.83

Table 4.1: The addition of a robust illumination term in our SE(3) tracker, coupled
with the increased depthmap density, results in improved tracking performance. LSD-
SLAM had particular trouble with fr2/desk and fr3/long_office_household and
would frequently lose track of the camera or fail to detect a loop closure, resulting in
increased error. The results for each dataset are computed across 10 trials.

4.2 Quantitative Evaluation

We ran our pipeline on four video sequences from the TUM RGB-D SLAM Bench-

marks [137], which were captured using a hand-held Microsoft Kinect [11] in a variety

of environments with pose ground truth provided by a motion capture system. We

used the depth frames as a proxy for depth ground truth and compare the perfor-

mance of MLM against LSD-SLAM [47] using a variety of metrics. We used the first

depth frame to initialize our system in order to set the global scale factor and ignored

the first 5 keyframes to screen out initialization effects while the poses and depths con-

verge. Furthermore, as both our pipeline and LSD-SLAM are heavily multi-threaded,

performance can vary from run to run based on differences in keyframe selection and

loop closure detection, so we report metrics averaged over 10 trials for each dataset.

We first evaluate the accuracy of the inverse depth estimates of the two systems

by computing the relative inverse depth error. For each valid inverse depth estimate

in each depthmap, we compute the inverse depth error relative to the corresponding

pixel from the Kinect depthmap and normalize this error by the Kinect inverse depth.

We then average this error across all pixels with depths and across all trials. As

shown in Figure 4-4, MLM’s inverse depth estimates have lower relative error than

LSD-SLAM’s for all four benchmark datasets.

Next, we consider the density of the inverse depthmaps. We compute the fraction

70

Average Time per Mapping Update [ms]
Dataset LSD-SLAM MLM

fr2/desk 16 17
fr3/long_office_household 13 16
fr3/nostructure_texture_near_withloop 12 15
fr3/structure_texture_far 14 17

Table 4.2: The multi-resolution depth estimation approach of MLM allows for signif-
icantly more depth estimates per keyframe, while maintaining real-time operation at
30 Hz. Here, the average run-time per keyframe update, including depth estimation,
hole-filling, and rasterization, over 10 trials is presented for each dataset.

of pixels in each depthmap that have inverse depth estimates that are within 10

percent of the corresponding Kinect values (in other words, we only count “accurate”

inverse depths in these tallies) and then average these values across all depthmaps

and all trials. As shown in Figure 4-5, MLM has denser (and more accurate) inverse

depthmaps than LSD-SLAM for all four datasets (see Figure 4-7 for examples of the

final reconstructions for the four datasets). Reconstructions for one of the datasets

(fr3/structure_texture_far) are also shown in detail in Figure 4-3 and Figure 4-

6. Figure 4-3 compares the depthmap density of LSD-SLAM against MLM with the

corresponding Kinect inverse depthmap as a reference. Note that MLM is able to

accurately reconstruct the scene in the absence of gradient information. Figure 4-

6, in turn, shows how the increased density of each individual depthmap leads to a

higher-fidelity point cloud across all keyframes.

The increased reconstruction density of the MLM keyframes also allows for more

accurate pose estimates as shown in Table 4.1. With denser, more accurate keyframe

depthmaps (in addition to a robust global illumination term), MLM achieves lower

tracking error in both position and orientation than LSD-SLAM for all datasets con-

sidered.

These improvements come without significantly increasing runtime relative to

LSD-SLAM as shown in Table 4.2. By leveraging image data from both high and

low spatial frequencies, MLM is able to estimate denser, more accurate reconstruc-

tions and more accurate poses with nearly the same runtime as LSD-SLAM.

71

(a) Keyframe image. (b) Kinect inverse depthmap.

(c) LSD-SLAM (d) MLM

Figure 4-3: Our algorithm significantly increases the number of accurate inverse depth
estimates per keyframe compared to LSD-SLAM [47], a state-of-the-art algorithm
for semi-dense monocular SLAM. Here we compare inverse depthmaps for a sin-
gle keyframe from LSD-SLAM (c) and MLM (d) on a publicly available benchmark
dataset [137]. The corresponding color image for the keyframe is shown in (a) and
the Kinect inverse depthmap used as ground truth is shown in (b). Green indicates
near depths and blue indicates far depths. Note the increased reconstruction density
and quality of MLM when compared to LSD-SLAM.

72

Figure 4-4: For each keyframe, we compute the inverse depth error relative to the
corresponding value from the Kinect across all pixels with valid estimates. The results
from each dataset are averaged across all keyframes and across 10 trials and are
displayed above each bar. Our multi-level approach achieves more accurate depth
estimates on all four datasets.

Figure 4-5: We compute the fraction of pixels in each keyframe with inverse depth
estimates that are within 10 percent of the corresponding values from the Kinect depth
frames. The results for each dataset are averaged across all keyframes and across
10 trials and are displayed above each bar. Our multi-level approach significantly
increases the number of accurate inverse depths per keyframe.

73

(a) LSD-SLAM Point Cloud.

(b) MLM Point Cloud.

Figure 4-6: Here we compare the final point clouds from LSD-SLAM (a) and MLM
(b) on a publicly available benchmark dataset [137]. Note how MLM is able to
intelligently interpolate depth information through low texture regions.

74

(a) fr2/desk (b) fr3/long_office_household

(c) fr3/nostruct._tex_near_w.l. (d) fr3/structure_texture_far

Figure 4-7: We validate our monocular SLAM pipeline on publicly available bench-
mark datasets captured using a Microsoft Kinect [137], which demonstrates our algo-
rithm’s ability to produce dense reconstructions through low-texture image regions.

75

4.3 Discussion

The results of the previous section show that MLM is able to significantly improve

upon the state-of-the-art in CPU-only monocular SLAM in terms of both recon-

struction accuracy and density by intelligently distributing computational resources

to image regions with high-texture while estimating low-texture regions at coarser

resolutions.

The increased inverse depthmap density, coupled with global illumination com-

pensation, also improves tracking performance in both position and orientation. Note

that the benchmark videos in [137] are challenging for pure monocular SLAM systems

due to the automatic settings (gain, exposure, brightness, etc.) and rolling shutter

of the Kinect’s RGB camera as well as camera motion. LSD-SLAM had particu-

lar trouble with the first two datasets (fr2/desk and fr3/long_office_household)

and frequently lost track of the camera or failed to detect a loop closure, leading to

increased tracking error over the 10 trials.

MLM appears to generate the best reconstructions across the different datasets

when the geometric structure is mainly planar and fronto-parallel, as in the lab-

oratory workspace (Figure 4-2), fr3/nostructure_texture_near_withloop, and

fr3/structure_texture_far. This is most likely because these scenes play to the

strengths of the variational regularizer described in Section 3.7, which biases the

inverse depthmaps to be piecewise constant.

Fine geometric structure (e.g. the tree in Figure 4-1b) and depth discontinuities

(e.g. the desk lamps in Figure 4-1a) are not reconstructed as cleanly, however. Fine

geometric structure may be problematic because the depth signal from these regions

may fall below the noise floor dictated by the sensor noise and texture strength,

encouraging more false-matches. Depth discontinuities appear to be smeared in some

cases, suggesting the regularization strength is too high. Weighting the regularizer

by the image gradient (as done in [35]) may help in these cases.

76

Chapter 5

Adaptive Depth Meshing

This chapter presents an alternative dense reconstruction method to the multi-resolution

approach of MLM discussed in Chapter 3 and Chapter 4. MLM is able to produce

dense reconstructions by varying the detail of the geometry based on the available

image texture. Since low-texture image regions do not carry significant depth sig-

nal and are often correlated with simple geometric structure, MLM represents these

regions with more coarsely sampled depth estimates, allowing it to generate dense

inverse depthmaps with the speed of semi-dense methods.

MLM, however, always represents high-texture image regions with finely sampled

depth estimates — even if the corresponding geometry is actually simple. Consider,

for example, a floor covered with highly textured carpet or tiles. Although the number

of depth estimates needed to accurately reconstruct the floor is quite small (e.g. the

four corners of the room), MLM will run an expensive epipolar search for every pixel

with high gradient across the floor. The approach discussed in this chapter, however,

directly adapts the reconstruction to the estimated scene geometry such that simple

geometric structures are efficiently represented with only a small number of depth

estimates that can be estimated quickly, no matter the texture.

The intuition behind the method is that given the computational load of depth

estimation, SWaP constrained platforms should carefully choose which pixels to es-

timate depth for so as to not waste resources on points which add no value to the

overall reconstruction. This approach was inspired by the recent work of [138], which

77

Algorithm 1 Update depthmesh with new image.

1: function UpdateDepthMesh(𝑉𝑘−1,T
𝑊
𝑘 , 𝐼𝑘)

2: // Update each vertex.
3: for 𝑣𝑖 ∈ 𝑉𝑘−1 do
4: // Track vertex into new frame.
5: 𝑣−𝑖 ← Track(𝑣𝑖,T

𝑊
𝑘 , 𝐼𝑘)

6:
7: // Compute depth using track history.
8: (𝑧𝑖, 𝜎

2
𝑧𝑖

)← Depth(u−
𝑖 , ℎ𝑖)

9:
10: // Fuse depth.
11: (𝜉𝑖, 𝜎

2
𝑖)← Fuse((𝜉−𝑖 , 𝜎

2−
𝑖), (𝑧𝑖, 𝜎

2
𝑧𝑖

))
12: end for
13:
14: // Refine mesh.
15: 𝑉𝑘 ← RefineMesh(𝑉𝑘)
16: end function

estimates a semi-dense disparity map from stereo images, iteratively refining the map

by adding new disparity estimates where the matching fit is poor.

The approach presented in this chapter robustly tracks high gradient pixels be-

tween consecutive frames using semi-dense optical-flow based technique that allows

for wide-baseline depth measurements (Section 5.2). These high-gradient pixels are

then interpreted as the vertices of a dense, piecewise linear, triangular depthmesh

(Section 5.3) that is iteratively refined to capture the geometry of the scene with

a small number of vertices (far fewer than either MLM or LSD-SLAM [47]) (Sec-

tion 5.4), which may result in a significant speedup over the state-of-the-art. For

now, we assume that the camera poses are known and concentrate on the depth

estimation problem exclusively.

5.1 Algorithm Outline

The main update routine for the approach is summarized in Algorithm 1. Given an

image sequence 𝐼𝑘 : Ω → R+ (over image domain Ω ⊂ R2) from a moving camera

with known pose T𝑊
𝑘 ∈ SE(3) in world frame 𝑊 , at each timestep 𝑘 we wish to

78

estimate the inverse depthmap 𝐷𝑘 : Ω → R+, which we will approximate using a

piecewise-planar, triangular, inverse depth mesh. The vertices of the mesh will be

denoted by 𝑉𝑘. Each vertex 𝑣𝑖 ∈ 𝑉𝑘 is defined at a pixel location u𝑖 ∈ Ω in the

current frame and at locations ℎ𝑖 = {u𝑗
𝑖} for past frames 𝑗 < 𝑘, with an inverse

depth estimate 𝜉𝑖 ∈ R+ and inverse depth variance 𝜎2
𝑖 ∈ R+. Assuming that the

scene geometry is smooth, we produce a dense inverse depthmap that approximates

the scene by linearly interpolating the inverse depths between the mesh vertices.

For each new tracked image (𝐼𝑘,T
𝑊
𝑘), the vertices from the previous timestep

𝑉𝑘−1 are tracked into the new image using a Lucas-Kanade-style [76] least squares

optimization. The inverse depth estimate for each vertex is subsequently updated

based on the result of this tracking. A wide-baseline depth measurement z𝑖 with

uncertainty 𝜎2
z𝑖

is then produced for each vertex 𝑣𝑖 using a past vertex location using

the history ℎ𝑖. The noisy measurement is then fused with the vertex’s inverse depth

estimate using a standard Bayesian update as in MLM [9] and LSD-SLAM [46, 47]

(see Section 3.4). Finally, the updated vertex set is refined by adding new vertices

where the reconstruction fit is poor.

5.2 Pixel Tracking

For each vertex 𝑣𝑖 ∈ 𝑉𝑘−1, we first predict where its corresponding pixel u𝑖 projects

into the new image 𝐼𝑘 given the current inverse depth estimate 𝜉𝑖 and the current

pose T𝑊
𝑘 :

u−
𝑖 = 𝜋(KT𝑘

𝑊T𝑊
𝑘−1K

−1(ū𝑖/𝜉𝑖)), (5.1)

where u−
𝑖 is the predicted location.

We next refine u−
𝑖 by minimizing the following nonlinear least squares cost function

along the epipolar line e𝑖 ∈ R2 (see Section 2.3.1):

𝐸(∆) =
1

2

∑︁
v∈𝒲

(︀
𝐼𝑘(u−

𝑖 + v + e𝑖∆)− 𝐼𝑘−1(u𝑖 + v)
)︀2

+
1

2𝜎2
𝑖

∆2 (5.2)

79

where the v ∈ 𝒲 are an equally spaced window of samples along the epipolar line and

∆ ∈ R is the amount that u−
𝑖 moves along the epipolar line (usually called the optical

flow). In addition to constraining the pixel motion to lie along e𝑖, the second term in

Equation (5.2) also regularizes the motion, with the regularization strength governed

by the vertex’s inverse depth variance 𝜎2
𝑖 . The more confident that an inverse depth

estimate is (i.e. the lower the variance), the more costly large pixel motions become.

We optimize Equation (5.2) iteratively using the inverse compositional Lucas-

Kanade formulation [139, 140]. Given a current estimate of the motion ∆ (initially

zero), we find the optimal increment 𝛿 that minimizes

𝐸̃(𝛿) =
1

2

∑︁
v∈𝒲

(︀
𝐼𝑘−1(u𝑖 + v + e𝑖𝛿)− 𝐼𝑘(u−

𝑖 + v + e𝑖∆)
)︀2

+
1

2𝜎2
𝑖

(∆ + 𝛿)2.

(5.3)

Note that the roles of 𝐼𝑘 and 𝐼𝑘−1 are reversed in the inverse compositional formulation

so that the Hessian of the cost function does not need to be computed at every

iteration [91].

We optimize 𝐸̃ by performing coarse-to-fine Gauss-Newton steps by linearizing

𝐼𝑘−1(u𝑖 + v + e𝑖𝛿) about 𝛿 = 0:

𝐼𝑘−1(u𝑖 + v + e𝑖𝛿) ≈ 𝐼𝑘−1(u𝑖 + v) +∇𝐼𝑘−1(u𝑖 + v)e𝑖𝛿, (5.4)

and solving the linear system induced by substituting this approximation into Equa-

tion (5.3) for the optimal motion increment 𝛿. This increment is then used to update

the gross motion ∆ ← ∆ − 𝛿. (Note the sign difference of the increment 𝛿 with the

inverse compositional formulation.)

Once the optimization has converged, we update the pixel location of the vertex

u−
𝑖 ← u−

𝑖 +e𝑖∆ and update the the inverse depth accordingly to obtain the predicted

estimate (𝜉−𝑖 , 𝜎
2−
𝑖). We will denote this predicted vertex by 𝑣−𝑖 .

80

Figure 5-1: The scenario depicted above shows a pixel (green) tracked between a
succession of images. Tracking is facilitated by leveraging small baseline images. For
example, between 𝐼4 and 𝐼5. On the other hand, wide-baseline depth estimation is
enabled by leveraging comparison images further into the past, such as 𝐼5 and 𝐼1.

5.3 Depth Estimation and Fusion

With the vertex 𝑣−𝑖 tracked into the current 𝐼𝑘, we compute a new wide-baseline

depth measurement 𝑧𝑖 by triangulating u−
𝑖 with the oldest pixel u𝑗0

𝑖 in the history of

detections ℎ𝑖.

We then compute a measurement variance 𝜎2
𝑧𝑖

for this value using the noise model

in [47], and fuse (𝑧𝑖, 𝜎
2
𝑧𝑖

) with (𝜉−𝑖 , 𝜎
2−
𝑖) using a standard Bayesian update:

𝜉𝑖 ←
𝜎2
𝑧𝑖
𝜉−𝑖 + 𝜎2−

𝑖 𝑧𝑖

𝜎2−
𝑖 + 𝜎2

𝑧𝑖

(5.5)

𝜎2
𝑖 ←

(︂
1

𝜎2−
𝑖

+
1

𝜎2
𝑧𝑖

)︂−1

(5.6)

before setting the updated vertex 𝑣𝑖.

Estimating inverse depths in this manner allows the pixel association problem to

be decoupled from the actual depth computation (see Figure 5-1). Pixel association

or tracking is typically more robust when the baseline between the two images is small

(because the images are more similar), while depth estimation is typically more robust

when the baseline is large (because it allows for better triangulation). By separating

81

(a) Vertices (b) Triangulation (c) Rasterization

Figure 5-2: A dense depthmap is computed from a sparse set of vertices 𝑉𝑘 (a). A
triangular mesh of the vertices is computing using a Delaunay triangulation that
maximizes the minimum angle across all triangles (b). The inverse depths inside the
convex hull of vertices are computed by interpolating between the inverse depth of
the vertices using a simple rasterization scheme.

the two tasks, we can associate pixels using a small-baseline comparison image (i.e.

the previous frame), but triangulate using a wide-baseline comparison image (i.e. the

oldest element in the history).

5.4 Mesh Refinement

With the updated vertex set 𝑉𝑘, we now mesh the vertices (Section 5.4.1) and reg-

ularize the inverse depth estimates using the connectivity of the mesh assuming the

scene geometry is smooth (Section 5.4.2). Finally, new vertices are added to the mesh

in areas that are not well reconstructed (Section 5.4.3).

5.4.1 Delaunay Triangulation

We use the open-source library Triangle [141] to compute a Delaunay triangulation

of the vertices 𝑉𝑘. A triangulation of a set of 2D points partitions the convex hull

of the points into triangular regions such that the corners of the triangles lie at

the points. The set of such triangles is typically called a mesh. Triangulations are

not unique [133]. The Delaunay triangulation [142] generates triangles such that

the minimum angle across all the triangles in the mesh is maximized (i.e. “skinny”

triangles are discouraged). Once the inverse depth vertex set 𝑉𝑘 is triangulated, we

82

linearly interpolate the inverse depths inside each triangle using a simple rasterization

scheme to achieve a dense depthmap 𝐷𝑘 (see Figure 5-2).

5.4.2 Regularization

In order to smooth the inverse depths and remove outliers we use a simple two-stage

approach. First, gross outlier inverse depths are removed by applying a median filter

to each vertex 𝑣𝑖 ∈ 𝑉𝑘 using its neighbors computed by the Delaunay triangulation.

More specifically, for each vertex 𝑣𝑖, we fetch the inverse depths of its neighbors

based on the triangulation. If the inverse depth estimate 𝜉𝑖 is far from the median

value of the neighbors, we replace 𝜉𝑖 with the median, otherwise we leave the value

untouched. We then apply a low-pass filter using the same approach: we replace the

depth estimate 𝜉𝑖 for vertex 𝑣𝑖 with the mean of its neighbors.

5.4.3 Mesh Augmentation

New vertices are added to the mesh at each iteration of the algorithm while respecting

a user-defined density parameter 𝑝 ∈ (0, 1). Small 𝑝 will reduce the density of vertices

in the mesh, while large 𝑝 will increase the density. The specific value is set to maintain

real-time operation.

To add vertices, we first create a binary mask of the current depthmap using the

current vertex set 𝑉𝑘. If an 𝑁×𝑁 region of pixels contains a vertex, the region will be

set to false. We then detect FAST corners and high-gradient pixels in the uncovered

regions at multiple image levels and initialize a vertex at the detected location with

probability 𝑝.

New vertices are also added based on the matching cost generated by the depthmap

𝐷𝑘 induced by 𝑉𝑘. For each pixel u ∈ Ω that is not a vertex and has a depth in 𝐷𝑘,

we compute the sum-of-squared differences between a window of pixels around u in

𝐼𝑘 and around the projection of u into the previous frame assuming depth 𝐷𝑘(u). If

the matching cost exceeds a threshold, we add it to the vertex set with probability 𝑝.

83

5.5 Preliminary Results

We present preliminary qualitative reconstruction results using the

fr3/structure_texture_far dataset from the TUM RGB-D SLAM benchmarks [137]

with ground truth pose estimates from a motion capture system. Our implementation

is written in C++. All results were produced on a consumer desktop with an Intel

Core i7 processor with 4 hyperthreaded cores and 16 GB of RAM.

Figure 5-3 shows a snapshot of the algorithm at a particular point in the dataset

using 𝑝 = 0.001 and 5 pyramid levels for tracking. The input image is shown in

the upper left, while the tracked vertices 𝑉𝑘 are shown in the upper right. The

colors correspond to track age, with red points indicating new tracks that have yet to

converge. The result of the Delaunay triangulation is shown in the bottom left and

the dense interpolated inverse depthmap is shown in the bottom right. The colormap

indicates depth, with blue indicating far depths and green indicating near depths.

Note the completeness of the depthmap, despite the fact that the number of vertices

tracked ranges from 1500 to 2500, which is an order of magnitude fewer than that of

MLM [9] and LSD-SLAM [47].

Figure 5-4 shows the resulting point cloud induced from the dense inverse depthmap

for this instance in time and compares it to the final point cloud from MLM. Note

the reduced outliers and noise in the reconstruction due to the implicit regulariza-

tion afforded by the mesh, as well as the comparable reconstruction density. With

additional improvements, this approach should offer dense reconstructions with sig-

nificantly lower computational requirements than the state-of-the-art.

84

(a) Live image 𝐼𝑘. (b) Mesh vertices 𝑉𝑘.

(c) Delaunay triangulation. (d) Interpolated Inverse Depthmap 𝐷𝑘.

Figure 5-3: We show preliminary qualitative reconstruction results on a publicly
available benchmark dataset [137]. (a) shows the live image at this point in the
dataset. (b) shows the tracked mesh vertices 𝑉𝑘 colored by track age (red indicates
a young track). The Delaunay triangulation of the vertices is depicted in (c). The
dense inverse depthmap (blue indicates far, green indicates near) induced by the
triangulation is shown in (d). Note the completeness and fidelity of the depthmap
despite the small number of vertices tracked (1500-2500), an order of magnitude lower
than MLM [9] and LSD-SLAM [47].

85

(a) MLM

(b) Meshing approach

Figure 5-4: Here we compare the point clouds from MLM (a) and a single frame from
our meshing approach (b). Note the decreased noise in the meshing point cloud due
to the implicit regularization afforded by the mesh, as well as the increased density
despite estimating inverse depths for far fewer points.

86

5.6 Discussion

The adaptive depth meshing algorithm described in the previous sections is a promis-

ing approach to dense reconstruction that intelligently balances reconstruction den-

sity and fidelity with the number of stereo computations. Additional work is needed,

however, to make the pixel tracking more efficient and depth fusion more robust. Al-

though the point cloud shown in Figure 5-4 is encouraging, there are slight biases in

the depth estimates (e.g. the poster on the floor) that can most likely be corrected.

For example, the depth noise model can be augmented to account for outlier mea-

surements directly as in [45]. The biases could also be due to errors in the input poses

such that the image textures are not correctly aligned. Refining the incoming poses

using the current mesh (such that the map and poses are consistent) could reduce

this effect. A more intelligent regularization scheme based on total variation could

also be employed to increase the map fidelity, although some care would need to be

taken in order to apply it directly to the mesh representation. More work is also

needed to generalize the reconstruction performance to disparate datasets, minimize

the computational load to run on low-SWaP hardware, and evaluate the accuracy of

the approach.

Further computational savings could also be made by not only augmenting the

mesh for regions with high photometric error, but also pruning vertices from the

mesh that are redundant. Most environments may be accurately described with only

a small number of 3D points that correspond to the corners of the geometric structure.

The pixels that these points project to can be thought of the minimal set of vertices

needed to accurately reconstruct the environment. The mesh refinement method

described could be modified such that the vertices tracked are whittled down to only

this minimal set. In addition to the increased efficiency that this would provide,

it would also add additional smoothness benefits from the implicit regularization

afforded by the mesh. A machine learning approach could also be employed to learn

which 2D pixels in the input imagery correspond to this minimal set of 3D points,

which may make the approach robust to different types of imagery and camera motion.

87

88

Chapter 6

Conclusion

Despite the rapid progress in real-time monocular SLAM over the last several years,

state-of-the-art approaches are either too computationally expensive, too limited in

scale, or too geometrically sparse to be successfully used for high-speed MAV naviga-

tion. This thesis presented research that addresses some of these shortcomings and

allows fully dense geometry to be estimated with the speed, efficiency, and scale of

semi-dense methods.

A novel dense monocular SLAM algorithm called Multi-Level Mapping (MLM) [9]

was presented in Chapter 3 that allows dense 3D geometry to be estimated online

without the aid of a graphics processing unit (GPU). The key contribution is a multi-

resolution depth estimation and spatial smoothing process that exploits the corre-

lation between low-texture image regions and simple planar structure to adaptively

scale the complexity of the generated reconstruction to the quality of the input im-

agery. High-texture image regions are represented at higher resolutions to capture fine

detail, while low-texture regions are represented at coarser resolutions for smooth sur-

faces. This approach allows for significant computational savings while simultaneously

increasing reconstruction density and quality when compared to the state-of-the-art.

MLM was evaluated in Chapter 4 both qualitatively on hand-held camera data,

as well as quantitatively on publicly available benchmark datasets [137]. The quan-

titative analysis shows that MLM improves upon the state-of-the-art in CPU-only

monocular SLAM in terms of both tracking and mapping performance. MLM pro-

89

duced more accurate pose estimates than LSD-SLAM [47] across all datasets. It also

significantly increased the accuracy and density of the produced depthmaps without

sacrificing speed, leading to higher-fidelity reconstructions produced online.

Preliminary qualitative results were also presented for an adaptive meshing tech-

nique in Chapter 5 that may further reduce the computational requirements for fully

dense monocular SLAM. The intuition behind the approach is that it is much more

efficient to check whether a depth hypothesis is supported by the available imagery

than it is to actually compute the correct depth. To that end, we maintain a piecewise-

linear dense depth mesh whose vertices comprise a subset of the high image gradient

pixels. At each frame, the mesh is refined by computing the stereo matching cost for

each pixel in the dense depthmap induced by the mesh. Vertices are then added to

the mesh where the interpolated depthmap poorly fits the input imagery, such that

depths are only computed for those pixels that are needed to represent the geometry

in the scene, which offers a significant computation speedup that brings MAV-capable

dense monocular SLAM one step closer to viability.

90

Bibliography

[1] Keith Naughton. Google’s Driverless-Car Czar on Taking the Human Out of
the Equation. http://www.bloomberg.com/features/2016-john-krafcik-i
nterview-issue. Accessed: 2016-08-11.

[2] Evan Ackerman. Skydio’s Camera Drone Finally Delivers on Autonomous Fly-
ing Promises. http://spectrum.ieee.org/automaton/robotics/drones/sk
ydio-camera-drone-autonomous-flying. Accessed: 2016-08-04.

[3] Steve Strunsky. Fugitive who fled police in Passaic River sewer pipe may be
trapped, cops say. http://www.nj.com/essex/index.ssf/2016/08/passaic_
river_manhunt_intensifies_after_suspect_es.html. Accessed: 2016-08-
04.

[4] Scott Shane and David E. Sanger. Drone Crash in Iran Reveals Secret U.S.
Surveillance Effort. http://www.nytimes.com/2011/12/08/world/middle
east/drone-crash-in-iran-reveals-secret-us-surveillance-bid.html.
Accessed: 2016-08-11.

[5] Farhad Manjoo. Think Amazon’s Drone Delivery Idea is a Gimmick? Think
Again. http://www.nytimes.com/2016/08/11/technology/think-amazons
-drone-delivery-idea-is-a-gimmick-think-again.html. Accessed: 2016-
08-11.

[6] Steve Dent. Feds give Google OK to test Project Wing drone deliver-
ies. https://www.engadget.com/2016/08/02/feds-give-google-ok-to-t
est-project-wing-drone-deliveries. Accessed: 2016-08-11.

[7] Kelsey D. Atherton. NASA is Testing a Drone for Mars. http://www.popsci
.com/nasa-has-mars-plane-concept. Accessed: 2016-08-04.

[8] Elizabeth Landau. Helicopter Could Be ’Scout’ for Mars Rovers. http://www.
jpl.nasa.gov/news/news.php?feature=4457.

[9] W. Nicholas Greene, Kyel Ok, Peter Lommel, and Nicholas Roy. Multi-Level
Mapping: Real-time Dense Monocular SLAM. In Proc. ICRA, 2016.

[10] Hokuyo Automatic Co. LTD. Hokuyo UTM-30LX. https://www.hokuyo-aut
.jp/02sensor/07scanner/utm_30lx.html. Accessed: 2016.07.20.

91

http://www.bloomberg.com/features/2016-john-krafcik-interview-issue
http://www.bloomberg.com/features/2016-john-krafcik-interview-issue
http://spectrum.ieee.org/automaton/robotics/drones/skydio-camera-drone-autonomous-flying
http://spectrum.ieee.org/automaton/robotics/drones/skydio-camera-drone-autonomous-flying
http://www.nj.com/essex/index.ssf/2016/08/passaic_river_manhunt_intensifies_after_suspect_es.html
http://www.nj.com/essex/index.ssf/2016/08/passaic_river_manhunt_intensifies_after_suspect_es.html
http://www.nytimes.com/2011/12/08/world/middleeast/drone-crash-in-iran-reveals-secret-us-surveillance-bid.html
http://www.nytimes.com/2011/12/08/world/middleeast/drone-crash-in-iran-reveals-secret-us-surveillance-bid.html
http://www.nytimes.com/2016/08/11/technology/think-amazons-drone-delivery-idea-is-a-gimmick-think-again.html
http://www.nytimes.com/2016/08/11/technology/think-amazons-drone-delivery-idea-is-a-gimmick-think-again.html
https://www.engadget.com/2016/08/02/feds-give-google-ok-to-test-project-wing-drone-deliveries
https://www.engadget.com/2016/08/02/feds-give-google-ok-to-test-project-wing-drone-deliveries
http://www.popsci.com/nasa-has-mars-plane-concept
http://www.popsci.com/nasa-has-mars-plane-concept
http://www.jpl.nasa.gov/news/news.php?feature=4457
http://www.jpl.nasa.gov/news/news.php?feature=4457
https://www.hokuyo-aut.jp/02sensor/07scanner/utm_30lx.html
https://www.hokuyo-aut.jp/02sensor/07scanner/utm_30lx.html

[11] Microsoft. Kinect for Windows Sensor Components and Specifications.
https://msdn.microsoft.com/en-us/library/jj131033.aspx. Accessed:
2016.07.20.

[12] PointGrey. Bumblebee2 1394a. https://www.ptgrey.com/bumblebee2-firew
ire-stereo-vision-camera-systems. Accessed: 2016.07.20.

[13] PointGrey. Firefly MV. https://www.ptgrey.com/firefly-mv-usb2-camer
as. Accessed: 2016.07.20.

[14] Olivier Faugeras, Quang-Tuan Luong, and Theo Papadopoulo. The geometry
of multiple images: the laws that govern the formation of multiple images of a
scene and some of their applications. MIT Press, 2004.

[15] Richard Hartley and Andrew Zisserman. Multiple View Geometry. Cambridge
University Press, 2003.

[16] Grant Schindler, Frank Dellaert, and Sing Bing Kang. Inferring temporal order
of images from 3d structure. In Proc CVPR, 2007.

[17] David G Lowe. Object recognition from local scale-invariant features. In Proc.
ICCV, 1999.

[18] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up
robust features (SURF). Comp. Vis. and Image Understanding, 2008.

[19] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. ORB: An
efficient alternative to SIFT or SURF. In Proc. ICCV, 2011.

[20] Davide Scaramuzza and Friedrich Fraundorfer. Visual Odometry: Part 1: The
First 30 Years and Fundamentals. IEEE Robotics & Automation Magazine,
2011.

[21] Friedrich Fraundorfer and Davide Scaramuzza. Visual Odometry: Part 2:
Matching, Robustness, Optimization, and Applications. IEEE Robotics & Au-
tomation Magazine, 2012.

[22] Bill Triggs, Philip F McLauchlan, Richard I Hartley, and Andrew W Fitzgib-
bon. Bundle adjustmentâĂŤa modern synthesis. In International Workshop on
Vision Algorithms, 1999.

[23] Frank Dellaert, Steven M Seitz, Charles E Thorpe, and Sebastian Thrun. Struc-
ture from motion without correspondence. In Proc. CVPR, 2000.

[24] Sameer Agarwal, Noah Snavely, Ian Simon, Steven M Seitz, and Richard
Szeliski. Building rome in a day. In Proc. ICCV, 2009.

[25] Noah Snavely, Steven M Seitz, and Richard Szeliski. Photo tourism: exploring
photo collections in 3d. In Transactions on Graphics (TOG), 2006.

92

https://msdn.microsoft.com/en-us/library/jj131033.aspx
https://www.ptgrey.com/bumblebee2-firewire-stereo-vision-camera-systems
https://www.ptgrey.com/bumblebee2-firewire-stereo-vision-camera-systems
https://www.ptgrey.com/firefly-mv-usb2-cameras
https://www.ptgrey.com/firefly-mv-usb2-cameras

[26] Kurt Konolige and Willow Garage. Sparse sparse bundle adjustment. In Proc.
BMVC, 2010.

[27] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science
& Business Media, 2006.

[28] Manolis IA Lourakis and Antonis A Argyros. Sba: A software package for
generic sparse bundle adjustment. Transactions on Mathematical Software
(TOMS), 2009.

[29] Andrew J Davison. Real-time simultaneous localisation and mapping with a
single camera. In Proc. ICCV, 2003.

[30] Georg Klein and David Murray. Parallel tracking and mapping for small AR
workspaces. In Proc. ISMAR, 2007.

[31] Raul Mur-Artal, JMM Montiel, and Juan D Tardos. Orb-slam: a versatile and
accurate monocular slam system. Trans. on Robotics, 2015.

[32] Anastasios I Mourikis and Stergios I Roumeliotis. A multi-state constraint
kalman filter for vision-aided inertial navigation. In Proc. ICRA, 2007.

[33] Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza. Imu
preintegration on manifold for efficient visual-inertial maximum-a-posteriori es-
timation. In RSS, 2015.

[34] Allen D Wu, Eric N Johnson, Michael Kaess, Frank Dellaert, and Girish Chowd-
hary. Autonomous flight in gps-denied environments using monocular vision and
inertial sensors. Journal of Aerospace Information Systems, 2013.

[35] Richard A Newcombe, Steven J Lovegrove, and Andrew J Davison. DTAM:
Dense tracking and mapping in real-time. In Proc. ICCV, 2011.

[36] Vivek Pradeep, Christoph Rhemann, Shahram Izadi, Christopher Zach, Michael
Bleyer, and Steven Bathiche. MonoFusion: Real-time 3D reconstruction of small
scenes with a single web camera. In Proc. ISMAR, 2013.

[37] Matia Pizzoli, Christian Forster, and Davide Scaramuzza. REMODE: Proba-
bilistic, monocular dense reconstruction in real time. In Proc. ICRA, 2014.

[38] Gottfried Graber, Thomas Pock, and Horst Bischof. Online 3D reconstruction
using convex optimization. In Proc. ICCV workshop, 2011.

[39] Peter Ondruska, Pushmeet Kohli, and Shahram Izadi. MobileFusion: Real-
time volumetric surface reconstruction and dense tracking on mobile phones.
In Trans. on Visualization and Computer Graphics, 2015.

[40] Andreas Wendel, Michael Maurer, Gottfried Graber, Thomas Pock, and Horst
Bischof. Dense reconstruction on-the-fly. In Proc. CVPR, 2012.

93

[41] Michael Goesele, Brian Curless, and Steven M Seitz. Multi-view stereo revisited.
In Proc. CVPR, 2006.

[42] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and robust multiview
stereopsis. Trans. PAMI, 2010.

[43] Vu Hoang Hiep, Renaud Keriven, Patrick Labatut, and Jean-Philippe Pons.
Towards high-resolution large-scale multi-view stereo. In Proc. CVPR, 2009.

[44] NVIDIA. Jetson TK1. https://www.nvidia.com/object/jetson-tk1-embed
ded-dev-kit.html. Accessed: 2016.07.20.

[45] Christian Forster, Matia Pizzoli, and Davide Scaramuzza. SVO: Fast semi-direct
monocular visual odometry. In Proc. ICRA, 2014.

[46] Jakob Engel, Jurgen Sturm, and Daniel Cremers. Semi-dense visual odometry
for a monocular camera. In Proc. ICCV, 2013.

[47] Jakob Engel, Thomas Schöps, and Daniel Cremers. LSD-SLAM: Large-scale
direct monocular slam. Proc. ECCV, 2014.

[48] Raúl Mur-Artal and Juan D Tardós. Probabilistic semi-dense mapping from
highly accurate feature-based monocular slam. Prov. RSS, 2015.

[49] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT
press, 2005.

[50] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping:
Part I. IEEE Robotics & Automation Magazine, 2006.

[51] Tim Bailey and Hugh Durrant-Whyte. Simultaneous localization and mapping:
Part II. IEEE Robotics & Automation Magazine, 2006.

[52] Frank R Kschischang, Brendan J Frey, and H-A Loeliger. Factor graphs and
the sum-product algorithm. IEEE Transactions on Information Theory, 2001.

[53] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and
techniques. MIT Press, 2009.

[54] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wol-
fram Burgard. g2o: A general framework for graph optimization. In Proc.
ICRA, 2011.

[55] Michael Kaess, Ananth Ranganathan, and Frank Dellaert. iSAM: Incremental
smoothing and mapping. Trans. on Robotics, 2008.

[56] Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela Ila, John J
Leonard, and Frank Dellaert. iSAM2: Incremental smoothing and mapping
using the bayes tree. IJRR, 2011.

94

https://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html
https://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html

[57] Eric A Wan and Rudolph Van Der Merwe. The unscented kalman filter for non-
linear estimation. In Adaptive Systems for Signal Processing, Communications,
and Control Symposium 2000. AS-SPCC. The IEEE 2000, 2000.

[58] Arnaud Doucet, Nando De Freitas, and Neil Gordon. An introduction to se-
quential monte carlo methods. In Sequential Monte Carlo methods in practice.
2001.

[59] P Cheeseman, R Smith, and M Self. A stochastic map for uncertain spatial
relationships. In Proc. ISRR, 1987.

[60] MWM Gamini Dissanayake, Paul Newman, Steve Clark, Hugh F Durrant-
Whyte, and Michael Csorba. A solution to the simultaneous localization and
map building (slam) problem. IEEE Transactions on robotics and automation,
2001.

[61] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Wegbreit. Fast-
SLAM: A factored solution to the simultaneous localization and mapping prob-
lem. In AAAI, 2002.

[62] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Wegbreit. Fast-
SLAM 2.0 : An improved particle filtering algorithm for simultaneous localiza-
tion and mapping that provably converges. In Proc. IJCAI, 2003.

[63] Simon J Julier and Jeffrey K Uhlmann. A counter example to the theory of
simultaneous localization and map building. In Proc. ICRA. IEEE, 2001.

[64] Feng Lu and Evangelos Milios. Globally consistent range scan alignment for
environment mapping. Autonomous Robots, 1997.

[65] Sebastian Thrun and Michael Montemerlo. The graph slam algorithm with
applications to large-scale mapping of urban structures. IJRR, 2006.

[66] Kurt Konolige, Giorgio Grisetti, Rainer Kümmerle, Wolfram Burgard, Benson
Limketkai, and Regis Vincent. Efficient sparse pose adjustment for 2d mapping.
In Proc. IROS, 2010.

[67] Frank Dellaert and Michael Kaess. Square root sam: Simultaneous localization
and mapping via square root information smoothing. IJRR, 2006.

[68] H Christopher Longuet-Higgins. A computer algorithm for reconstructing a
scene from two projections. Nature, 1981.

[69] Christopher G Harris and JM Pike. 3d positional integration from image se-
quences. Image and Vision Computing, 1988.

[70] Hans P Moravec. Obstacle avoidance and navigation in the real world by a
seeing robot rover. Technical report, Stanford University, 1980.

95

[71] Larry Matthies and STEVENA Shafer. Error modeling in stereo navigation.
Journal on Robotics and Automation, 1987.

[72] Larry Henry Matthies. Dynamic stereo vision. Technical report, 1989.

[73] Chris Harris and Mike Stephens. A combined corner and edge detector. In
Alvey Vision Conference, 1988.

[74] Jianbo Shi and Carlo Tomasi. Good features to track. In Proc. CVPR, 1994.

[75] Edward Rosten and Tom Drummond. Machine learning for high-speed corner
detection. In Proc. ECCV, 2006.

[76] Bruce D Lucas, Takeo Kanade, et al. An iterative image registration technique
with an application to stereo vision. In IJCAI, 1981.

[77] Carlo Tomasi and Takeo Kanade. Detection and tracking of point features.
Technical report, Carnegie Mellon University, 1991.

[78] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartogra-
phy. Communications of the ACM, 1981.

[79] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In Proc. CVPR. IEEE, 2005.

[80] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief:
Binary robust independent elementary features. In Proc. ECCV, 2010.

[81] Ramin Zabih and John Woodfill. Non-parametric local transforms for comput-
ing visual correspondence. In Proc. ECCV, 1994.

[82] David Nistér. An efficient solution to the five-point relative pose problem.
Trans. PAMI, 2004.

[83] David Nistér, Oleg Naroditsky, and James Bergen. Visual odometry. In Proc.
CVPR, 2004.

[84] Padmanabhan Anandan. A computational framework and an algorithm for the
measurement of visual motion. IJCV, 1989.

[85] James R Bergen, Patrick Anandan, Keith J Hanna, and Rajesh Hingorani. Hi-
erarchical model-based motion estimation. In European conference on computer
vision, 1992.

[86] Frank R Hampel, Elvezio M Ronchetti, Peter J Rousseeuw, and Werner A
Stahel. Robust statistics: the approach based on influence functions. 2011.

[87] Guoying Li. Robust regression. Exploring data tables, trends, and shapes, 1985.

96

[88] Alireza Bab-Hadiashar and David Suter. Robust optic flow computation. IJCV,
1998.

[89] Michael J Black and Paul Anandan. The robust estimation of multiple motions:
Parametric and piecewise-smooth flow fields. Computer Vision and Image Un-
derstanding, 1996.

[90] Ee Ping Ong and Michael Spann. Robust optical flow computation based on
least-median-of-squares regression. IJCV, 1999.

[91] Simon Baker and Iain Matthews. Lucas-kanade 20 years on: A unifying frame-
work. IJCV, 2004.

[92] Henry Harlyn Baker. Depth from edge and intensity based stereo. Technical
report, DTIC Document, 1982.

[93] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions,
and the bayesian restoration of images. Trans. PAMI, 1984.

[94] Robert T Collins. A space-sweep approach to true multi-image matching. In
Proc. CVPR, 1996.

[95] Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms. IJCV, 2002.

[96] Steven M Seitz, Brian Curless, James Diebel, Daniel Scharstein, and Richard
Szeliski. A comparison and evaluation of multi-view stereo reconstruction algo-
rithms. In Proc. CVPR, 2006.

[97] Richard Szeliski. Computer vision: algorithms and applications. Springer Sci-
ence & Business Media, 2010.

[98] Richard Szeliski. A multi-view approach to motion and stereo. In Proc. CVPR,
1999.

[99] Sing Bing Kang, Richard Szeliski, and Jinxiang Chai. Handling occlusions in
dense multi-view stereo. In Proc. CVPR, 2001.

[100] Pau Gargallo and Peter Sturm. Bayesian 3d modeling from images using mul-
tiple depth maps. In Proc. CVPR, 2005.

[101] Steven M Seitz and Charles R Dyer. Photorealistic scene reconstruction by
voxel coloring. IJCV, 1999.

[102] Kiriakos N Kutulakos and Steven M Seitz. A theory of shape by space carving.
IJCV, 2000.

[103] Adrian Broadhurst, Tom W Drummond, and Roberto Cipolla. A probabilistic
framework for space carving. In Proc. ICCV, 2001.

97

[104] W Bruce Culbertson, Thomas Malzbender, and Greg Slabaugh. Generalized
voxel coloring. In International Workshop on Vision Algorithms, 1999.

[105] Sébastien Roy and Ingemar J Cox. A maximum-flow formulation of the n-
camera stereo correspondence problem. In Proc. ICCV, 1998.

[106] Olivier Faugeras and Renaud Keriven. Variational Principles, Surface Evolu-
tion, PDE’s, Level Set Methods and the Stereo problem. IEEE, 2002.

[107] Brian Curless and Marc Levoy. A volumetric method for building complex
models from range images. In Proc. on Computer Graphics and Interactive
Techniques, 1996.

[108] Pascal Fua and Yvan G Leclerc. Object-centered surface reconstruction: Com-
bining multi-image stereo and shading. IJCV, 1995.

[109] Demetri Terzopoulos. Regularization of inverse visual problems involving dis-
continuities. Trans. PAMI, 1986.

[110] Demetri Terzopoulos and Dimitri Metaxas. Dynamic 3d models with local and
global deformations: Deformable superquadrics. In Proc. ICCV, 1990.

[111] Michael J Black and Anand Rangarajan. On the unification of line processes,
outlier rejection, and robust statistics with applications in early vision. IJCV,
1996.

[112] Daniel Scharstein and Richard Szeliski. Stereo matching with nonlinear diffu-
sion. IJCV, 1998.

[113] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy mini-
mization via graph cuts. Trans. PAMI, 2001.

[114] Hiroshi Ishikawa and Davi Geiger. Occlusions, discontinuities, and epipolar
lines in stereo. In Proc. ECCV, 1998.

[115] Olga Veksler. Efficient graph-based energy minimization methods in computer
vision. PhD thesis, Cornell University, 1999.

[116] Vladimir Kolmogorov and Ramin Zabih. Computing visual correspondence with
occlusions using graph cuts. In Proc. ICCV, 2001.

[117] Yuichi Ohta and Takeo Kanade. Stereo by intra-and inter-scanline search using
dynamic programming. Trans. PAMI, 1985.

[118] Peter N Belhumeur and David Mumford. A bayesian treatment of the stereo
correspondence problem using half-occluded regions. In Proc. CVPR, 1992.

[119] Peter N Belhumeur. A bayesian approach to binocular steropsis. IJCV, 1996.

98

[120] Davi Geiger, Bruce Ladendorf, and Alan Yuille. Occlusions and binocular stereo.
IJCV, 1995.

[121] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation
based noise removal algorithms. Physica D: Nonlinear Phenomena, 1992.

[122] David Mumford and Jayant Shah. Optimal approximations by piecewise smooth
functions and associated variational problems. Communications on Pure and
Applied Mathematics, 1989.

[123] Thomas Pock, Daniel Cremers, Horst Bischof, and Antonin Chambolle. An
algorithm for minimizing the mumford-shah functional. In Proc. ICCV, 2009.

[124] Yu Nesterov. Smooth minimization of non-smooth functions. Mathematical
Programming, 2005.

[125] Ernie Esser, Xiaoqun Zhang, and Tony F Chan. A general framework for a
class of first order primal-dual algorithms for convex optimization in imaging
science. Journal on Imaging Sciences, 2010.

[126] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm
for convex problems with applications to imaging. Journal of Mathematical
Imaging and Vision, 2011.

[127] Ethan Eade and Tom Drummond. Scalable monocular slam. In Proc. CVPR,
2006.

[128] Ethan Eade and Tom Drummond. Edge landmarks in monocular slam. In Proc.
BMVC, 2006.

[129] Pedro Piniés, Lina Maria Paz, and Paul Newman. Dense mono reconstruction:
Living with the pain of the plain plane. In Proc. ICRA, 2015.

[130] Michael Bleyer, Christoph Rhemann, and Carsten Rother. Patchmatch stereo-
stereo matching with slanted support windows. In Proc. BMVC, 2011.

[131] Raphael A. Finkel and Jon Louis Bentley. Quad Trees: A data structure for
retrieval on composite keys. Acta Informatica, 1974.

[132] Tiago Gonçalves, Andrew Comport, et al. Real-time direct tracking of color
images in the presence of illumination variation. In Proc. ICRA, 2011.

[133] Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Cheong
Schwarzkopf. Computational Geometry. Springer, 2000.

[134] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
University Press, 2004.

[135] Neal Parikh, Stephen P Boyd, et al. Proximal algorithms. Foundations and
Trends in Optimization, 2014.

99

[136] Arren Glover, William Maddern, Michael Warren, Stephanie Reid, Michael
Milford, and Gordon Wyeth. OpenFABMAP: An open source toolbox for
appearance-based loop closure detection. In Proc. ICRA, 2012.

[137] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark
for the evaluation of RGB-D slam systems. In Proc. IROS, 2012.

[138] Sudeep Pillai, Srikumar Ramalingam, and John J. Leonard. High-Performance
and Tunable Stereo Reconstruction. In Proc. ICRA, 2016.

[139] Gregory D Hager and Peter N Belhumeur. Efficient region tracking with para-
metric models of geometry and illumination. Trans. PAMI, 1998.

[140] Simon Baker and Iain Matthews. Equivalence and efficiency of image alignment
algorithms. In Proc. CVPR, 2001.

[141] Jonathan Richard Shewchuk. Triangle: Engineering a 2D Quality Mesh Gener-
ator and Delaunay Triangulator. In Applied Computational Geometry: Towards
Geometric Engineering. 1996. From the First ACM Workshop on Applied Com-
putational Geometry.

[142] Jonathan Richard Shewchuk. Delaunay refinement algorithms for triangular
mesh generation. Computational Geometry, 2002.

100

	Introduction
	Motivation
	Simultaneous Localization and Mapping
	Why Cameras?
	Sparse Monocular SLAM
	Dense Monocular SLAM
	Semi-Dense Monocular SLAM

	Thesis Overview

	Monocular Simultaneous Localization and Mapping
	Probabilistic Formulation
	Graphical Model
	Backend vs. Frontend

	Backend
	Filter-based Approaches
	Smoothing-based Approaches

	Frontend
	Epipolar Geometry
	Visual Odometry
	Depth Estimation

	Full Systems
	Sparse Methods
	Dense Methods
	Semi-Dense Methods

	Multi-Level Mapping
	Algorithm Outline
	Problem Formulation
	Notation
	Problem Statement

	Tracking on 3
	Depth Estimation using Quadtree Keyframes
	Hole-Filling
	Triangulation and Rasterization
	Spatial Regularization
	Pose-graph Optimization on 3
	Summary

	Evaluation
	Qualitative Evaluation
	Quantitative Evaluation
	Discussion

	Adaptive Depth Meshing
	Algorithm Outline
	Pixel Tracking
	Depth Estimation and Fusion
	Mesh Refinement
	Delaunay Triangulation
	Regularization
	Mesh Augmentation

	Preliminary Results
	Discussion

	Conclusion

