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We want Autonomous Vision-Based Navigation
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But Dense Monocular SLAM is Expensive
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SVO (Forster et al., ICRA 2014)

Sparse Methods
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Semi-Dense Methods
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Dense Methods

?

Can we more efficiently estimate dense geometry?
https://commons.wikimedia.org/wiki/File%3ANvidia_Titan_XP.jpg

https://shop-media.intel.com/api/v2/helperservice/getimage?url=http://images.icecat.biz/img/gallery/23221218_49.jpg&height=550&width=550

https://www.qualcomm.com/sites/ember/files/styles/optimize/public/component-item/flexible-block/thumb/chip_3.png?itok=XncLtDdQ

https://commons.wikimedia.org/wiki/File:Nvidia_Titan_XP.jpg
https://shop-media.intel.com/api/v2/helperservice/getimage?url=http://images.icecat.biz/img/gallery/23221218_49.jpg&height=550&width=550


8

What Would a Dense Method Do?

Image
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Estimate Depth for Every Pixel

Depthmap
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Dense Methods Oversample Geometry

One depth estimate per pixel

100k - 1M pixels per image

Depthmap
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Dense Methods Make Regularization Hard(er) 

One depth estimate per pixel

100k - 1M pixels per image
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Meshes Encode Geometry with Fewer Depths
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Meshes Encode Geometry with Fewer Depths
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Meshes Make Regularization Easy(er)

One depth estimate per vertex

100 - 10k vertices per mesh

Depthmap
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FLaME: Fast Lightweight Mesh Estimation

Fast (< 5 ms/frame)     Lightweight (< 1 Intel i7 CPU core)     Runs Onboard MAV

Greene and Roy, ICCV2017
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Select Easily Trackable Features

- At each frame we sample trackable pixels or features over the image

- These features will serve as potential vertices to add to the mesh
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Select Easily Trackable Features

- At each frame we sample trackable pixels over the image domain

- These features will serve as potential vertices to add to the mesh

Select pixel in each grid cell with maximum score:
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Estimate Inverse Depths for Features

- We track features across new images using direct epipolar stereo 

comparisons

- Each successful match generates an inverse depth measurement

- Measurements are fused over time using Bayesian update
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Triangulate Features into Mesh 

- Once a features inverse depth variance drops below threshold, we insert it 

into the mesh using Delaunay triangulations
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Triangulate Features into Mesh 

- Once a features inverse depth variance drops below threshold, we insert it 

into the mesh using Delaunay triangulations

- We can project 2D mesh into 3D using the inverse depth for each vertex
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Smooth Mesh Using Variational Regularization

- Mesh inverse depths are noisy and prone to outliers

- Need to spatially regularize/smooth inverse depths

Raw
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Smooth Mesh Using Variational Regularization

- Mesh inverse depths are noisy and prone to outliers

- Need to spatially regularize/smooth inverse depths

- Will exploit graph structure to make optimization fast and incremental

Raw Smoothed
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Define Variational Cost over Inverse Depthmap

Raw idepthmap
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Define Variational Cost over Inverse Depthmap

NLTGV2 stands for Non-Local Total Generalized Variation (Second Order)

Ranftl et al. 2014, Pinies et al. 2015

Raw idepthmap

Smoothed idepthmap
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Approximate Cost over Mesh

- Reinterpret mesh as graph
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Approximate Cost over Mesh
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Approximate Cost over Mesh
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Optimize using Primal-Dual on Graph
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Optimize using Primal-Dual on Graph

Math…

Vertices update using edges
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Optimize using Primal-Dual on Graph

Math…

Optimization steps are fast even 

without GPU (<< frame rate) 

Optimization convergence is 

fast (~ frame rate) 

Mesh can be augmented without 

restarting optimization
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Benchmark Results

Compared FLaME to two existing CPU-only approaches:

- LSD-SLAM

- MLM 

Evaluated on two benchmark datasets (ground truth poses):

- TUM RGBD SLAM (640x480 @ 30 Hz)

- EuRoC MAV (752x480 @ 20 Hz)

Desktop Intel i7 CPU only
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Benchmark Results

Lower Error
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Benchmark Results

More Dense
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Benchmark Results

Less Load
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Benchmark Results

Faster
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Benchmark Results
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Flight Experiments

DJI F450 frame

Intel NUC flight computer 

10 ms/frame runtime

1.5 core load

Indoor Flight at 2.5 m/s

Outdoor Flight at 3.5 m/s
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Flight Experiments
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FLaME Contributions

• Proposed a lightweight method for dense online monocular depth estimation

Paper Code*
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W. Nicholas Greene (wng@csail.mit.edu)
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FLaME Contributions

• Proposed a lightweight method for dense online monocular depth estimation

• Formulated the reconstruction problem as a non-local variational

optimization over a Delaunay graph, which allows for a fast, efficient 

approach to depth estimation

• Demonstrated improved depth accuracy and density on benchmark 

datasets using less than 1 Intel i7 CPU core

• Demonstrated real-world applicability with indoor and outdoor flight 

experiments running FLaME onboard, in-the-loop

Paper Code*

* Coming soon!
W. Nicholas Greene (wng@csail.mit.edu)
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